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Abstract 

This thesis presents a method of controlling the reactive power injected into a medium-

voltage collection system by multiple wind turbine generators such that the voltage at one 

bus is maintained at a specified level.  The proposed control accounts for the system 

impedance between the wind turbine generator terminals and the point of interconnect, and 

utilizes an optimal power flow algorithm to dispatch reactive power amongst the wind 

turbine generators.  This optimal power flow algorithm minimizes real power losses within 

the wind power plant and avoids operating conditions that violate various operating 

constraints. 

This thesis presents a 100 wind turbine generator wind plant test system and uses this 

test system to demonstrate the potential increased revenues occasioned by the proposed 

control system as compared to a system that dispatches the wind turbine generator reactive 

power injections uniformly.  Analysis shows that it can be cost effective to install the 

proposed control system. 
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Chapter 1 Introduction 

The rapid growth of the wind industry in the United States and elsewhere has forced 

large wind power plants (WPPs) to provide ancillary services more similar to what is 

expected of a traditional power plant.  To meet this demand, wind turbine generator (WTG) 

manufacturers offer centralized control systems that can provide many of these services [1]. 

This thesis focuses on one of these ancillary services, voltage and/or reactive power 

control; however, the control proposed could be expanded to other ancillary services such as 

frequency regulation.  Chapter 2 provides an introduction to the topology of large-scale wind 

power plants.  The standard AC power flow equations are provided in Chapter 3 along with 

their implications for voltage control.  A centralized voltage control algorithm is proposed in 

Chapter 4.   

The remainder of the thesis focuses on the benefits of the proposed control system, 

namely the ability to minimize electrical losses within the WPP and the ability to avoid 

violating system constraints.  Chapter 5 presents a test WPP system that is used in the case 

study discussed in Chapter 6 and attempts to estimate the reduction in collection system 

energy losses caused by the use of an optimal reactive power dispatch strategy.  The results 

of the case study are discussed in Chapter 7. 

In the remainder of this paper, equations enclosed in a box are direct quotes from the 

source named in text. 
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Chapter 2 Large-Scale Wind Plants and Wind Plant Collection Systems 

Utility Scale WPPs 

For the purposes of this paper, utility-scale WPPs consist of several wind turbines that 

are connected to the bulk transmission system at one point. The following is a general 

description of the utility scale WPPs that are presently being built in the United States.  The 

IEEE PES Wind Plant Collector System Design Working Group has published several papers 

on the subject of collection system design including [1]–[9]. 

WTG Characteristics 

In large-scale WPPs, the individual wind turbine generators (WTGs) typically have 

terminal voltages in the low-voltage spectrum.  Figure 1 in [2] shows a turbine with a 575V 

turbine terminal voltage and Figure 1 in [3] states that terminal voltages between 400V and 

690V are typical. The individual wind turbines are connected to a medium voltage collection 

system via a transformer [2].  This transformer may be a part of the turbine itself or a 

separate unit located outside the tower [3].  Where the transformer is located outside the 

WTG, it is typically a three-phase pad-mounted transformer similar to those utilized on 

utility distribution systems [2].  

Medium-Voltage Collection System 

The medium-voltage collection systems utilized in WPPs is discussed in [2] and [4].  

Distribution class components in the 15kV, 25kV, and 35kV classes are widely available for 

both underground and overhead distribution systems.  These components are defined by 

industry standards such as [10], [11], [12], and [13].  The use of higher voltages has several 

well-documented advantages, including reduced losses, ability to carry larger amounts of 

power over longer distances, and better voltage performance.   

The typical medium voltage collection system at WPPs constructed in the United States 

is operated at 34.5kV [2].  While [2] does not justify the use of 34.5kV as the standard 

collection system voltage; it appears to be that this is the highest voltage class for which 
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standard distribution system components, especially cable accessories such as splices, 

terminators, and elbows, are available is 35kV. 

The use of standard medium-voltage components is typical of utility practices.  Use of 

standard components minimizes inventory and increases familiarity of crews with correct 

installation practices reducing the probability of serious mistakes during installation [4].  

Though not specifically discussed in [4], use of standard components reduces costs due to the 

widespread availability of the components (Reference [2] describes pad-mounted 

transformers as “commodities”) and provides for some interchangeability between 

manufacturers.  These standard utility practices have carried over to the wind industry and 

WPP medium voltage collection systems are typically constructed with standard distribution 

class components [4]. 

The medium-voltage collection systems can be overhead, but are more typically 

underground as they are more acceptable to landowners and can also result in reduced losses, 

higher reliability, and fewer restrictions on the movement of construction equipment.  These 

collection circuits are typically constructed in a radial fashion with the turbines connected in 

a daisy chain, utilizing junction boxes and the loop-feed bushings in the turbine transformers 

[2].   

In the author’s experience, this radial configuration is significantly different than what 

is typical of modern underground residential distribution (URD) circuits.  While practices 

vary between utilities, in a typical URD circuit the underground cable would be configured in 

a loop with a normally open point in the middle.  This allows any individual cable segment to 

be de-energized and repaired while maintaining service to customers and allows service to 

customers to be restored prior to repairing a failed cable.  This method reduces outage 

durations, but results in a higher installation cost. In a looped system, the cables will also 

necessarily be normally operated at significantly less than maximum capacity, significantly 

reducing losses. 

Substation Characteristics 

The medium voltage collection circuits terminate in a substation and are connected to 

the main substation bus via circuit breakers.  These circuit breakers and main bus are 
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typically an open bus design [6].  The alternative to an open bus design is metal-clad 

switchgear, which the author has also seen on recent projects.   

Each collector circuit may be connected to a circuit breaker that is dedicated to that 

cable, or multiple cables may be combined and connected to one circuit breaker.  The 

collection circuits are then connected to the bulk transmission system via transformers in the 

substation and a transmission line.  This transmission line may amount to bus across a fence 

into an adjacent switchyard or may be several miles long, depending on the distance to the 

point of interconnect [2].  Depending on a variety of factors, the WPP substation may contain 

one or more transformers [9]. 

The substation may also contain reactive power compensation equipment [1]. 
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Chapter 3 The Voltage Control Problem 

Reactive power is commonly used to control voltages on power systems.  The 

justification for using reactive power to control voltage is described in several standard 

power systems analysis textbooks and other resources, including [14] and [15].  

The Power Flow Equations 

One form of the power flow equations are given in (3.1) and (3.2), which are given as 

Equation (10.5) in [14] (p. 326) and Equations (25a) and (25b) in [15]. 

Pi = Vi Vk Gik cosθik +Bik sinθik( )
k=1

n

∑  (3.1) 

Qi = Vi Vk Gik sinθik −Bik cosθik( )
k=1

n

∑  (3.2) 

 

Where:  

• Pi is the net real power injection at bus i 

• Qi is the net reactive power injection at bus i 

• |Vi| is the magnitude of the voltage at bus i 

• |Vk| is the magnitude of the voltage at bus k 

• Gik is the real component of the entry at position i, k of the bus admittance 

matrix YBUS [15] 

• Bik is the imaginary component of the entry at position i, k of the bus admittance 

matrix YBUS [15] 

• θik is the angular difference between the complex voltages of buses i and k 

Decoupling of Active and Reactive Power 

The decoupling of active and reactive power is discussed in [14] and briefly in [17].  In 

[14], the decoupling of active and reactive power is demonstrated by developing the power 

flow problem, the Newton-Raphson solution algorithm, and the Jacobian.  Here, a less 

rigorous approach is utilized to arrive at the same conclusion.   
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To demonstrate the decoupling of active (real) and reactive power, take the partial 

derivative of (3.1) and (3.2) with respect to θk and Vk.  This yields (3.3), (3.4), (3.5), and 

(3.6) which are given as Equation (10.40) in [14] (p. 345) and (9), (11), (13), and (15) in [16] 

(p. 10) with the p and q subscripts replaced with i and k, respectively. 

∂Pi
∂θk

= Vi Vk Gik sinθik −Bik cosθik( )  (3.3) 

∂Pi
∂Vk

= Vi Gik cosθik +Bik sinθik( )  (3.4) 

∂Qi

∂θk
= − Vi Vk Gik cosθik +Bik sinθik( )  (3.5) 

∂Qi

∂Vk
= Vi Gik sinθik −Bik cosθik( )  (3.6) 

 

In typical overhead transmission systems, the resistance and θik will be relatively low 

[14].  Additionally, voltages will be close to 1.0 pu under most operating conditions.  

Assume: 

θik ≈ 0   

Vi ≈1   

Vk ≈1   

Gik ≈ 0   

Substituting these into (3.3), (3.4), (3.5), and (3.6) yields (3.7), (3.8), (3.9), and (3.10). 

∂Pi
∂θk

≈ −Bik  (3.7) 

∂Pi
∂Vk

≈ 0  (3.8) 

∂Qi

∂θk
≈ 0  (3.9) 
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∂Qi

∂Vk
≈ −Bik  (3.10) 

Equation (3.8) implies that an incremental change in real power injection at a particular 

bus has relatively little impact on bus voltage at neighboring buses.  Similarly, (3.9) implies 

that an incremental change in the reactive power injection at a particular bus will have 

relatively limited impact on the angular difference across the branches connected to that bus. 

Equation (3.7) implies that an incremental change in the real power injection at a 

particular bus will have a relatively large impact on the angular difference across the 

branches connected to that bus.  Similarly, (3.10) implies that an incremental change in the 

reactive power injection at a particular bus will have a relatively large impact on voltage at 

neighboring buses. 

Stated differently, real and reactive power control different properties.  On a steady-

state basis, changes to the real power injections can best control the angular difference across 

a branch.  Similarly, changes to the reactive power injections control bus voltages [14]. 
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Chapter 4 Optimal VAR Flow Voltage Control for Large Scale Wind 

Power Plant 

Introduction 

The wind industry in the United States has grown rapidly over the past several years. 

Installed wind capacity in the United States totaled 40 181 MW at the end of 2010.  Of these, 

5 116 MW were added in 2010 [18].  The growth of the wind industry has forced large wind 

plants to provide ancillary services similar to those provided by conventional generation 

facilities.  In order to provide these ancillary services, wind turbine generator (WTG) 

manufacturers offer centralized control systems [1]. 

Large-Scale Wind Plants and Wind Plant Collection Systems 

For the purposes of this paper, large utility-scale wind power plants (WPPs) consist of 

several WTGs that are connected to the bulk transmission system at one point.  References 

[1] through [9] were prepared by the IEEE PES Wind Plant Collector System Design 

Working Group and describe the general topology and design considerations of the wind 

plants currently being constructed in the United States.   

Medium-Voltage Collection System 

The individual WTGs utilized on recent utility scale projects in North America tend to 

have nameplate generation capabilities between 1.5 and 2.5 MW.  The WTGs in use on 

utility scale WPPs generally have terminal voltages between 400V and 690V [3].  In the 

author’s experience, 690V is a very common terminal voltage. The individual WTGs are 

connected to a medium-voltage collection system through a transformer located within or 

next to the WTG [3].  If the transformer is located outside of the WTG, the transformer is 

likely to be very similar to the three-phase pad-mounted transformers utilized on utility 

distribution systems.  The medium-voltage collection systems are typically operated with a 

nominal voltage of 34.5kV [2]. 

The medium-voltage collection system connects the individual WTGs with a substation 

that contains a transformer connecting the medium-voltage collection system with the bulk 
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transmission system.  The medium-voltage collection system is normally constructed in a 

radial topology with underground cables, though overhead collection systems have also been 

constructed [2].  

The Voltage Control Problem 

Reactive power is commonly used to control voltages on power systems.  The 

justification for using reactive power to control voltage is described in several standard 

power systems analysis textbooks including [14].  In typical overhead transmission systems, 

the resistance will be small compared to the reactance.  On a steady state basis, the result of 

this is that bus voltages are best controlled by changing the reactive power injections while 

the difference in voltage angle between buses is best controlled by changing the real power 

injections [14].  

Reactive Power Compensation 

A large wind plant can consist of many WTGs, which may have reactive power 

capability, and the WPP may possess substation reactive power resources such as switched 

capacitors and reactors or dynamic devices such as static VAR compensators [1].  There have 

been several papers discussing the use of wind plants for the control or support of voltages on 

the bulk transmission system including [19] and [20] and discussion of the WTG 

characteristics, including reactive power capability, particularly the doubly fed induction 

generators (DFIG) including [5], [19], and [21].  Reference [22] proposes a transient model 

of the DFIG for use in transmission system level studies.   

Reference [1] discusses the requirements and design methodology for WPP reactive 

power compensation systems in the United States subject to regulation by FERC.  This 

paragraph is a summary of this discussion.  The interconnecting utility (transmission 

provider) performs a system impact study as a part of the interconnection process.  FERC 

Order 661-A [23] allows the interconnecting utility to require the WPP to supply reactive 

power sufficient to provide a power factor between 0.95 leading and 0.95 lagging if the 

system impact study shows that it is necessary to maintain system reliability.  This reactive 

power requirement typically applies to the complex power flow at the point of interconnect.  

The Large Generator Interconnection Agreement lays out other reactive power requirements 
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that the WPP is expected to meet.  The WPP is required to install sufficient reactive power 

resources (either WTGs with reactive power capability, substation resources, or a 

combination of the two) to meet this power factor requirement.  If needed for reliability 

reasons, the interconnecting utility may also require that the reactive power resources be 

“dynamic” to provide continuous smooth control of the interconnect bus voltage.  The WPP 

may be required to meet the reactive power requirement may be at one specific voltage, or 

over a range of voltages [1].  While not discussed in [1], reactive power requirements in the 

ERCOT region are different [24]. 

WTG Reactive Power Capability 

The reactive power capabilities of the common WTG designs are discussed in [5].  

References [19] and [21] also provide discussion of the capabilities of Type 3 (DFIG) WTGs.  

Type 1 and 2 designs (induction generators) are generally not capable of providing reactive 

power compensation, and the machines themselves actually absorb reactive power.  

Manufacturers of Type 1 and 2 designs normally provide several stages of switched power 

factor correction capacitors.  Type 3 and 4 (full converter) WTGS are capable of operating as 

dynamic reactive power resources and may also be capable of generating reactive power 

when the WTG is not producing real power.  The capability of Type 4 WTGs may vary with 

terminal voltage [5].  

Substation Reactive Power Resources 

If the WTGs do not have sufficient capability to meet the interconnect requirements 

described above, reactive power resources must be provided in the substation.  These 

resources may include switched capacitors and reactors, static VAR compensators (SVC), or 

static synchronous compensators (STATCOM).  STATCOMs and SVCs can operate as 

dynamic resources, but are more expensive than fixed capacitors and reactors.  If the 

transmission provider requires that the plant be capable of providing smooth voltage control, 

a combination of DFIG WTGs and switched capacitors and reactors may be acceptable [1]. 

Reference [1] also discusses low-voltage ride-through requirements and the role that 

power factor compensation has in low-voltage ride-through requirements. 
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Collection System Losses 

Energy that is generated by the WTGs but not delivered to the point of interconnect 

reduces the operator’s potential profits [9].  The analysis of losses in the WPP is discussed in 

detail in [6].  Additionally, losses in specific pieces of equipment are discussed in [4] and [9].  

Energy can be lost through electrical resistance in the system and no load losses in 

transformers.  Furthermore, energy that is not generated due to equipment failures within the 

WPP should also be considered as a portion of system losses.  A thorough collection system 

design will be based on total life-cycle cost.  This analysis will determine if the incremental 

savings in losses occasioned by a design change offset the cost of that design change [6].  

In addition to their consideration during the design phase, losses should be a 

consideration during the operation of the WPP as well [25], [26].  

Wind Plant Control 

Centralized Control Systems 

Reference [1] alludes to centralized control systems that can provide ancillary services 

that are required by transmission providers.  Reference [27] describes the features that are 

available with the control systems from one manufacturer.  In addition to other features, these 

control systems can monitor voltage and current at the substation and adjust the reactive 

various power resources (including the WTGs) to meet a desired voltage set point.  

The remainder of this paper assumes that the wind plants will typically regulate voltage 

at a specified point in the system.  There are several means of allocating the reactive power 

that is injected by the turbines amongst the several turbines.  The simplest would be to divide 

the total amount to be supplied equally amongst the WTGs.  References [28], [29], and [30] 

propose methods of dispatching reactive power proportionally amongst the individual WTGs 

based on the relative reactive power capability of each WTG.  This has the advantage of 

maintaining an equal margin between the turbine operating point and the maximum possible 

injection [28].  Reference [31] provides a method for using a central proportional integral 

control to regulate the reactive power flow at the point of interconnect, but provides each 

WTG with the same power factor signal.  The methods presented in [28], [29], [30], and [31] 
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have the advantage of being relatively simple to implement but appear to ignore the 

differences in impedance between the WTG terminals and the point of interconnect across 

the WPP.   

Reference [32] proposes a method dispatching reactive power in a large WPP that 

regulates voltage at a pre-determined location and considers the impedance of the collection 

system in allocating reactive power amongst the WTGs.  

Other papers also present methods of dispatching reactive power but focus mostly on 

low voltage ride through.  These include [33] and [34]. 

References [25] and [26] propose dispatching reactive power in an offshore WPP 

utilizing a particle swarm optimization method.  The WPP referenced in these papers is 

connected to the mainland 400kV transmission system via submarine 150kV AC power 

cables.  While these papers develop the general OPF problem that is broadly applicable to 

many WPPs with AC collection systems, and advocate use of an OPF algorithm to dispatch 

reactive power during the planning and operations stage, they do not extend the concept to 

the development of the reactive power dispatch to a controller that is intended for use in an 

on-line environment to regulate voltage at a specific bus.   

Reference [35] presents a centralized control scheme that dispatches reactive power 

amongst the WTGs using an optimal power flow algorithm.  Though [35] briefly discusses 

using the WPP to control interconnect bus voltage, the proposed control system receives the 

desired reactive power injection from the transmission operator.  The control system appears 

to be open loop and does not contain a feedback loop to regulate the WPP reactive power 

injection to the desired level. 

This paper presents an optimal control system similar to [25], [26], and [35] but applied 

to the large-scale WPPs currently being constructed in the United States.  The control system 

contains a feedback loop and is capable of being used in an on-line environment to regulate 

voltage to a predetermined set-point. 
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Proposed Approach 

The approach proposed in this paper is to allocate the reactive power amongst the 

WTGs and substation resources using an AC optimal power flow algorithm.  This has the 

advantage of minimizing losses and can also incorporate the substation VAR resources. 

Optimal Power Flow 

Optimal power flow is an extension of the economic dispatch problem in which the 

constraints include the set of power flow equations describing the transmission system.  In 

the classic optimal power flow problem, the generation dispatch of a power system is 

determined so as to find the dispatch that will satisfy the system load at the lowest cost.  It is 

also possible to minimize losses in the system or the amount of load to be shed [36]. 

By including constraints such as minimum and maximum bus potentials, branch 

currents, and generator real and reactive power injections, the optimal power flow solution 

can be forced to realize the various constraints on the operation of the system.  Some of the 

possible control variables include generator real power injection and terminal voltage, 

transformer load tap changer (LTC) position (where present), and capacitor switch status.  

The system model would need to include the loads at each bus, branch impedances, generator 

incremental cost data and constraints.  Constraints on the solution would typically include 

transmission line flows, bus voltages, and generator minimum and maximum real and 

reactive power injections [36].   

Application to Wind Plant Collection Systems 

In the operation of the in-plant electrical system of a WPP, the problem is substantially 

different.  The objective of site operation is obviously to maximize profits which are 

determined by the real power delivered to the transmission system at the point of 

interconnect and therefore requires the minimization of losses within the WPP.  Under 

normal operating conditions, the WTG real power injections are determined by the wind 

prevailing at each WTG.  The only way to maximize the real power delivered to the point of 

interconnect is to minimize the real power losses within the site.  Because the ability to 

control generator real power injections has been taken away, the only means to reduce 



www.manaraa.com

  14 

system losses is to change the reactive power dispatch.  As described above, the WPP is often 

required to regulate voltage at a predetermined bus to a specific level.  This serves as a 

further constraint on the reactive power dispatch. 

In the case of a WPP, the control variables include the WTG reactive power injection 

(assuming that the turbines have means of varying the reactive power injection), and may 

include the transformer LTC tap position (the substation transformers are often not supplied 

with load tap changers and [9] recommends avoiding them), switched capacitor status, and 

the reactive power injection from a static VAR compensation system.  The system model 

would need to include all branch impedances including cables, overhead lines, and 

transformers.  The transformers and medium-voltage cable systems are generally designed to 

carry the maximum expected load, thus thermal constraints are typically not a limiting 

condition.  Constraints include bus voltages, generator minimum and maximum reactive 

power injection, and, if applicable, maximum and minimum transformer LTC position. 

The discussion of the optimal power flow problem provided in the paragraphs above is 

consistent with [25], [26], and [35], except that load tap changers appear to be common in the 

systems described in [25] and [26].   

Proposed Control Topology 

The proposed control system will regulate the voltage or reactive power flow at a 

designated point in the system (usually the point of interconnect) to a predetermined value 

while dispatching the reactive power amongst multiple wind turbines so as to minimize total 

system losses.  The inputs and outputs of the proposed control are listed below.  This 

generally agrees with the formulations provided in [25], [26], and [35]. 

Control Inputs 

• System data (branch impedances, branch shunt admittances, transformer taps, 

etc.) 

• Status of substation reactive power resources 

• Limitations on changes to substation reactive resources 

• Equipment thermal limitations 
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• Bus voltage limitations 

• WTG real power injections 

• Voltage set point and regulated bus 

• WTG reactive power capabilities 

• Real power production at each WTG 

Control Outputs 

• Reactive power injected by each WTG 

• Changes to status of substation reactive power resources 

Methodology 

Because the amount of reactive power that needs to be injected into the transmission 

system to achieve the desired voltage set point is not known, a feedback control mechanism 

is required to regulate the voltage to the desired set point.  This feedback control compares 

the error between the between the measured voltage at the point of interconnect to the 

voltage set point and adjusts the reactive power generated by the wind plant to reduce the 

error.  A block diagram of this control scheme is shown in Figure 4-1. 

Figure 4-1:  Wind plant voltage control.  
This shows the inputs and outputs for the various system components. 

 

In this case, the control system monitors the voltage and current at a point in the 

substation.  This information is fed into a line drop compensator that calculates the voltage 

and real and reactive power injections to reflect those present at the regulated bus.  The 

system described in [27] is capable of regulating the voltage at a remote bus.  As noted in [1] 

this is often the point of interconnect.  If several plants are located in close proximity, it may 
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be necessary to regulate a different bus or even a fictitious point within the plant.  This has 

the effect of creating “voltage droop” and allows the plants to share voltage regulation duties 

[37].  The calculated voltage at the regulated bus is fed into the voltage regulator which 

compares the measured voltage with the voltage set point and calculates the reactive power 

that the OPF should deliver to the substation in order to produce the desired voltage.   

In order to solve the OPF, the algorithm will also need the real power injected by each 

WTG, the voltage limits at each bus, and the current or MVA limits in each branch.  It is 

assumed that under normal conditions the real power injected by each WTG will be 

determined by prevailing wind conditions and the WTG real power injections would be 

equality constraints.  If generation is curtailed due to transmission constraints or the wind 

plant is providing frequency regulation, this would not be the case.  The OPF also needs to 

know the status of the substation VAR resources.  For switched shunt devices such as 

capacitors and reactors, the number of times that the devices are switched should be limited 

to avoid excessive wear and to reduce circuit breaker or circuit switcher maintenance costs.  

Additionally, a delay must be built in to prevent reenergizing a capacitor until the voltage 

across the capacitor has decayed to a point where the energizing transients will be acceptable 

[38].  The optimal power flow problem is developed below. 

minPloss = Iik
2 Rik

ik=1

n

∑  (4.1)  

For all n branches 

Subject to: 

Pi = Vi Vk Gik cosθik +Bik sinθik( )
k=1

n

∑  (4.2) 

Qi = Vi Vk Gik sinθik −Bik cosθik( )
k=1

n

∑  (4.3) 

PGi = PWINDi  (4.4) 

VPOI = VSETPOINT  (4.5) 

QPOI =QVREG  (4.6) 



www.manaraa.com

  17 

QMINWTGi ≤QWTGi ≤QMAXWTGi  (4.7) 

VMINi ≤ Vk ≤ VMAXi  (4.8) 

Sik ≤ SMAXik  (4.9) 

Where: 

• PGi is the real power injected at bus i 

• PWINDi is the real power that the WTG at bus i is capable of injecting based on 

prevailing wind conditions 

• QPOI is the reactive power supplied to the point of interconnect 

• QVREG is the reactive power demanded by the voltage regulator 

• |VPOI| is the voltage magnitude at the point of interconnect (or other regulated 

bus) 

• |VSETPOINT| is the scheduled voltage at the point of interconnect 

• QMINWTGi is the maximum reactive power that the WTG at bus i can absorb 

• QWTGi is the reactive power supplied by the WTG at bus i 

• QMAXWTGi is the maximum reactive power that the WTG at bus i can supply 

• |VMINi| is the minimum voltage magnitude each bus i 

• |Vi| is the voltage magnitude at bus i 

• |VMAXi| is the maximum voltage magnitude at bus i 

• |Sik| is the apparent power flowing in branch ik 

• |SMAXik| is the maximum apparent power flow in branch ik 

• |Iik| is the current magnitude flowing in branch ik 

• Rik is the positive sequence AC resistance in branch ik 

• Gik and Bik are the real and imaginary components of the bus admittance matrix 

Note that (4.2) and (4.3) are given as Equation (10.5) in [14] (p. 326).  The formulation 

of the optimal power flow problem given in (4.1)–(4.9) is consistent with the formulation 

provided in [25], [26], and [35].   
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Voltage Regulator 

There are numerous possible topologies that would be suitable for the voltage regulator.  

Proportional integral derivative (PID) controllers are commonly used in industry for a variety 

of functions [39].  The author sees no reason why they could not be adapted to this purpose.  

A transfer function for a standard PID controller is provided in Equation (12.57) in [39] (p. 

601), which is repeated in (4.10) below.  

GPID
app s( ) = KP +Ki

1
s
+Kd

s
τ s+1

 (4.10) 

 

The constants Kp, Ki, and Kd are selected based on desired control response [39]. 

Practical Considerations 

Dead Band and Coarse Control 

A dead band would likely be implemented as a part of the voltage regulator.  This 

would mean that the control system would solve the OPF only after the measured voltage 

deviated from the set point by more than a predetermined amount for a specified duration.  

The width of the dead band would be based on discussions with the transmission provider 

and the delay would be long enough that the control would not act for faults or other 

temporary conditions.  This would serve to reduce the computational requirements while still 

ensuring that voltage is adequately regulated.  Additionally, it would likely be desirable to 

solve the OPF at regular intervals or after large changes in real power to ensure that the 

reactive power resources are still dispatched optimally.  A flow chart showing the logic that 

will initiate an OPF solution is provided in Figure 4-2. 

Fine Control 

This dead band will cause the control system to provide a relatively coarse regulation of 

the desired set point.  Two possibilities exist if fine voltage control is necessary.  The first 

possibility is to use dynamic substation reactive power resources such as static VAR 

compensators.  The alternative is to adjust the WTG reactive power injections as necessary 

using linear sensitivity analysis of the OPF results.   
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Figure 4-2:  OPF flow chart.  
This shows the logic used in executing the OPF.  

 

Linear sensitivity analysis is discussed briefly in [40] in the context of linearizing the 

power flow equations.  This method utilizes partial derivatives to show the variation in one 

quantity when another quantity is changed.  This method is only useful for small deviations 

from the original power flow solution.  This is especially true in cases where the sensitivity 

factor is for voltage or reactive power flow [40].   

In this case, the OPF solution is linearized.  One sensitivity coefficient is calculated for 

each WTG and shows the change in reactive power injection at the WTG for a change in 

reactive power delivered to the point of interconnect.  An inelegant way of approximating the 

linear sensitivity coefficients is to solve the OPF twice, once with the reactive power 

demanded by the voltage controller, and the second with a small incremental change.  The 
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linear sensitivity coefficients are then calculated by comparing the reactive power dispatches 

from the two OPF solutions. 

The linear sensitivity coefficient for WTG i, δ QWTGi, is defined in (4.11).  This 

provides the sensitivity of the reactive power injected by WTG i to changes in reactive power 

provided to the bulk transmission system at the point of interconnect. 

δQWTGi =
∂QWTGi

∂QPOI

≈
ΔQWTGi

ΔQPOI

 (4.11) 

Where: 

• QWTGi is the reactive power injected by WTG i 

• QPOI is the reactive power injected at the point of interconnect 

Define ∆QPOI as the change in power delivered to the bulk transmission system using 

(4.12). 

ΔQPOI =QNEWPOI −QPOI  (4.12) 

Where: 

• QNEWPOI is the new reactive power delivered to the bulk transmission system at 

the point of interconnect 

• QPOI is the reactive power delivered to the point of interconnect in the OPF 

solution 

Next define the change in reactive power generation at WTG i, ∆QWTGi, using (4.13). 

ΔQWTGi = δWTGi •ΔQPOI  (4.13) 

Next define the new reactive power generation at WTG i, QNEWWTGi, using (4.14). 

QNEWWTGi =QPOI +ΔQPOI  (4.14) 

Where QPOI is the reactive power injection at WTG i from the OPF solution. 

It is possible that changing the reactive power injections in this manner may cause the 

bus voltages at one or more buses to violate constraints.  The fine control should be used for 

relatively small adjustments that have negligible impact on voltage constraints.  The 

difference between the actual reactive power being delivered to the point of interconnect and 
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the value used in the last OPF solution would be used as a trigger to run a new OPF solution.  

This logic is shown in Figure 4-3. 

Figure 4-3:  OPF flow chart with additional logic to allow fine control.  
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Operation at Extreme Voltages or Reactive Power Injections 

It is also important to note that the OPF algorithm will fail to return a feasible solution 

if it is unable to deliver the desired reactive power without violating constraints.  This can be 

handled in two ways.  The first is to limit the amount of reactive power that the voltage 

regulator can demand.  The disadvantage to this is that the maximum reactive power that the 

WPP can deliver (or absorb) is dependent on the voltage at the point of interconnect.  As an 

example, analysis shows that in situations where the WPP substation transformer is not 

equipped with a load tap changer, the POI bus voltage is high, and the WPP is being asked to 

supply large amounts of reactive power, the voltages at the electrically remote WTG buses 

will reach high levels and the remote WTGs may begin to absorb reactive power.  This keeps 

the bus voltage at that WTG within limits, but reduces the reactive power that can be 

delivered and increases losses.  At moderate voltage levels this is unlikely to happen unless 

the collection circuits are very long.  See Chapter 7 for more discussion of this issue. 

Another option is to implement logic that executes the OPF again if it fails.  For the 

second attempt, the algorithm would be reconfigured so that it maximizes the reactive power 

that the WPP absorbs or delivers to the transmission system without reducing the real power 

generated by the WTGs.  This would likely result in increased losses, but would allow for the 

WPP’s full reactive power capacity to be utilized without exceeding equipment limitations.  

This would transform (4.1) into (4.15) or (4.16) below.  All constraints remain identical to 

those above, which have not been repeated for brevity. 

maxQPOI  (4.15) 

or: 

minQPOI  (4.16) 

Where QPOI is the reactive power injected into the transmission system at the point of 

interconnect. 

Physical Implementation 

The centralized control proposed in this article would be located at the WPP.  The 

control can be located in the substation control building or, alternatively, in the WPP 
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operations building with transducers or metering equipment located in the substation control 

building measuring the voltage, current, and real and reactive power.  The WPP SCADA 

system would provide these measurements to the control system.  In the author’s experience, 

fiber optic communications networks are typically built alongside the medium-voltage 

collection systems at large-scale WPPs.  These fiber optic networks connect the WTGs with 

the plant SCADA system and can be used to communicate the reactive power dispatch to the 

individual WTGs.  The local controllers at the individual WTGs would then be responsible 

for making adjustments to produce the desired level of reactive power. 

The transmission provider can provide the voltage set point in a number of ways.  In 

many cases, the transmission provider already has an existing SCADA connection with the 

WPP.  The voltage set point can be provided via this SCADA link.  Otherwise, voltage 

schedules can be provided in advance and entered into the SCADA system by WPP 

personnel. 

As the majority of the SCADA equipment necessary to implement the control is already 

present in the majority of cases, the additional cost to implement this control would be 

largely limited to the cost of implementing the OPF software and the servers necessary to 

handle the extra computing load. 

Conclusion 

The control system described in this paper presents a method of distributing reactive 

power amongst the WTGs and other reactive power resources that minimizes system losses 

while regulating voltage at one point in the system.  It is also capable of integrating voltage 

constraints that exist on the WPP collection system and avoiding operating conditions that 

violate these constraints.   

There are several opportunities for further work.  Perhaps the most obvious is the 

integration of such a reactive power dispatch scheme into a commercial WPP control system.  

Reference [27] discusses several ancillary services that commercial WPP control systems are 

capable of providing.  These include frequency response and generation curtailment.  

Frequency response and generation curtailment necessarily require reducing the real power 

generation below the level that the prevailing wind is capable of producing, this is especially 
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true if the WPP is expected to respond to under-frequency events [27].  The optimal reactive 

power dispatch could be extended to the real power dispatch under conditions when the real 

power generation is curtailed so that the WPP can respond to under-frequency events. 
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Chapter 5 100 WTG Test System Utilized for Case Study 

Test System Model 

 Figure 5-1:  Test collection system one-line diagram. 

 

A 100-1.5 MW (150 MW total) WTG test system model was created using the 

MATPOWER software package.  The MATPOWER AC OPF function utilizes a primal-dual 

interior point algorithm by default [41].  The software package also has a standard AC load 

flow algorithm.  This model uses data that the author believes to be typical of WPPs 

currently under construction in the United States.  The model assumes 1.5 MW WTGs with 

nominal terminal voltages of 690V.  The WTGs are connected to an underground 34.5kV 

collection system using pad-mounted transformers.  The 34.5kV collection system feeds into 
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a substation with five 38kV circuit breakers.  This substation is connected to a 138kV bulk 

transmission system via a transformer.  The use of 1.5 MW WTGs with a terminal voltage of 

690V is consistent with [42].  The use of pad-mounted transformers at each WTG is 

consistent with [2].  The use of a 34.5kV medium voltage collection system is consistent with 

[2].  In many parts of the United States, 138kV is a common bulk transmission voltage [43]. 

The system impedances are discussed in the paragraphs that follow.  This model is 

positive sequence only, as the intention is only to run balanced three-phase load flow and 

OPF simulations.  A one-line diagram of the system is shown in Figure 5-1.  The discussion 

of system grounding, while interesting and important, is outside of the scope of this paper. 

Due to space limitations, the WTGs are simplified in Figure 5-1.  Each WTG is 

assumed to have the basic layout shown in Figure 5-2. 

Figure 5-2: WTG configuration.   
The WTG connects to the medium-voltage collection system through a transformer.  

Note the loop feed bushings allowing convenient daisy chaining of WTGs. 

 

WTG Data 

The WTGs are assumed to be 1.5 MW Type 3 doubly fed induction generators (DFIG).  

Each is assumed to be capable of supplying or absorbing 726kVAR from minimum to full 

generation.  It is assumed that when the WTG is not generating real power, it will be capable 

of producing or absorbing 200kVAR as described in [42].  This is shown in Figure 5-3.  It is 

important to note that several references including [19] and [21] show that the reactive power 
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capability of Type 3 (DFIG) WTGs increases as real power generation decreases.  The 

assumed reactive power capability used in the case study is shown in Figure 5-3.  This curve 

is believed to be the best representation of the data provided in [42]. 

Figure 5-3: Assumed WTG real and reactive power capability. 

 

Turbine Transformer Data 

The turbine transformers are 1750kVA ONAN units with an impedance of 

0.74+j5.74%.  This is typical of units supplied for a recent WPP project that the author was 

involved in and yields a nominal impedance of approximately 5.75% that is the standard for 

pad-mounted transformers with nameplate ratings between 750kVA and 2500kVA defined in 

[44] and described in [42] as typical.  The X/R ratio is similar to the 7.5 that [42] describes as 

typical.  No load losses for each unit are assumed to be 2kW and 4kVAR.  It is assumed that 

the transformers would be set at nominal tap position.  

For the purposes of this study, it is assumed that all transformers would have equal 

impedance.  Reference [45] allows the impedance of identical units purchased at the same 

time to differ by up to 7.5% of the quoted transformer impedance.  



www.manaraa.com

  28 

35kV Cable 

The test system utilizes 4/0 AWG, 500 kcmil, and 1000 kcmil aluminum 35kV cables.  

Reference [4] discusses the application of power cables to WPP collection systems and lists 

commonly used cable sizes as 1/0 and 4/0 AWG, and 500 and 1000 kcmil.  Larger cable 

sizes such as 1250 and 1500 kcmil are also seeing more use.  Factors to include in cable 

sizing include, among others, allowable ampacity, available short circuit current, and real 

power losses [4].  The 1/0 AWG cable must be used with care as, in the author’s experience, 

the available fault current can exceed the capability of the cable and the cable has the highest 

resistance and therefore, also has the highest losses.   

Table 5-1: 35kV cable data 
Phase Conductor 4/0 AWG Al 500 kcmil Al 1000 kcmil Al 1000 kcmil Al 

with cross-
bonded 
concentric 
conductors 

Concentric 
Conductor 

15-#12 AWG Cu 16-#12 AWG Cu 16-#12 AWG Cu 16-#12 AWG Cu 

Positive Sequence 
Impedance 
(Ohms/1000 ft) 

0.1034+j0.0520 0.0462+j0.0459 0.0252+j0.0422 0.0219+j0.0427 

Shunt Admittance 
B/2, micro-
Siemens/1000 ft 

8.01 10.76 13.52 13.52 

Assumed Ampacity 
(A) 

250 390 510 540 

Maximum number 
of 1.5 MW turbines 
at 0.90 PF 

8 13 18 19 

 

It is common to limit the number of cables in use to three or four.  This eases the 

construction process and reduces the cable that must be stocked on an on-going basis for 

maintenance and repairs [4].  While not mentioned in [4], reducing the number of cable sizes 

used in the WPP also reduces the number of different cable accessories such as elbows and 

splice kits that must be stocked both during construction and for on-going maintenance.  The 
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data for the 35kV cable used in the test system is given in Table 5-1.  Impedances for each 

branch in the system are provided in Appendix 1. 

The impedances for the 35kV cable were calculated using the method outlined in [46] 

and physical data available from standard references.  The cables in use on WPPs are 

typically equipped with both a conductor screen and an insulation screen.  Because of this the 

shunt admittance was calculated using the formula provided for a tape-shielded cable on page 

120 of [47] rather than the formula for a concentric neutral cable presented on page 118 of 

[47].  This is more consistent with the formulas provided in [48] (p. 6-6) and is consistent 

with standard practices at author’s employer. 

The ampacity values presented above are based on recent projects and are believed to 

be typical of projects in Iowa.  Ampacity is determined largely by the thermal properties of 

the surrounding soil and the installation conditions and should be calculated specifically for 

each project [4].  Reference [13] limits the conductor temperature under normal operation to 

either 90 or 105 degrees C depending on the insulation design.  It also notes that the materials 

used in the cable joints and terminations may not allow operation at 105 degrees C.   

In overhead lines, wind blowing on the conductor provides cooling [49].  Underground 

cables do not benefit from this air movement and are instead surrounded by earth that acts as 

thermal insulation.  Underground cables will virtually always have lower ampacities than 

overhead lines utilizing the same phase conductor [2].   

Soil Thermal Resistivity 

Soil thermal resistivity is discussed in [2], [4], and [50].  The soil thermal resistivity 

provides a measure of the thermal insulation provided by the soil [2].  While [2] and [4] do 

not directly state that high soil thermal resistivities result in reduced cable ampacities, 

comments related to improving thermal resistivity with special backfill materials in [2] and 

typical thermal resistivity values in [4] imply that higher values result in lower cable 

ampacities.  This has been the author’s experience.   

The thermal resistivity value typically varies significantly based on the moisture 

content of the soil and the compaction level that is achieved after the cable has been installed.  
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High moisture content and low air content reduces the thermal resistivity [50].  Air content 

can be created by less-than-ideal compaction, which produces voids.  These voids reduce the 

ability of the cable to dissipate heat and increase thermal resistivity.  In the normal 

procedure, the soil resistivity is measured by obtaining several soil samples from the project 

site.  A testing laboratory compacts these samples to the level that is expected to be achieved 

during construction and measures the thermal resistivity properties.  The data from this the 

laboratory report are then used in the design studies [4]. 

References [4] and [50] note that cables carrying high currents have the tendency to dry 

the surrounding soil and as noted above, dry soils have higher thermal resistivity.  This can 

result in a thermal runaway condition in which the heat from the cable dries out the 

surrounding earth, resulting in a higher conductor temperature that dries out the surrounding 

earth further [50].   

The cable ampacity must be based on a stable operating point [50].  The method that 

appears to be advocated in [4] is to utilize a thermal resistivity value that assumes “dry-out 

conditions.”  Another method is described in [50].  In this method, the temperature at the 

junction between the cable and the earth (the “cable-earth interface”) is restricted to a value 

that limits moisture migration.  Reference [50] does not recommend the use of this method. 

Grounding Concentric Conductors 

Concentric neutral cables are used extensively in underground collection systems.  

These are single conductor cables constructed with strands of round wire wrapped 

concentrically around the insulation screen.  This construction is typically referred to as 

jacketed concentric neutral cable and the round wire strands are called often called concentric 

neutrals [4].  Reference [4] notes that the term concentric “neutral” may not be correct in the 

WPP environment but rather argues that the term “shield wires” would be more accurate.  

(The WTG transformers are typically supplied with delta connected medium-voltage 

windings and grounded wye connected low-voltage windings [3], [7], though [3] notes that 

the grounded wye – grounded wye connection is also in use.)  These will be referred to as 

“concentric conductors” for the remainder of this section.  
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Both the National Electrical Code [51] and the National Electrical Safety Code [52] 

require that the concentric conductors be grounded.  The problem of grounding the shields in 

single conductor cables has been covered in several references including [4], [48] (pp. 6-22–

24), [53], and [54].  Of these, [54] is the most complete and forms the basis of the remainder 

of this section except for references to WPP applications, which are based on [4] and the 

author’s experience.   

There are three common solutions to the problem of grounding of concentric 

conductors.  The first and most common is “multi-point” grounding.  In the multi-point 

grounding method, the concentric conductors are bonded to ground at both ends.  This 

method creates circulating currents in the concentric conductors that increase losses and 

reduce the ampacity [54].  These losses can be reduced by using tight cable spacing like the 

“trefoil configuration.”  In this arrangement, the cables are placed in a tight, triangular bundle 

[4].  In the author’s experience, a tight trefoil arrangement can be difficult to achieve 

compared to the “random lay,” “flat,” or “stacked” arrangements and reference [4] notes that 

random lay is the easiest arrangement to achieve.  An alternative method of reducing the 

circulating currents is to reduce the concentric conductor conductivity (see formulas in Table 

6-3 on page 6-23 of [48] or Table 1 in [53]).  With the exception of circuits where the 

concentric conductors have been cross-bonded (see discussion below), the cables ampacities 

and impedances utilized in the test system model assume that the concentric conductors are 

multi-grounded in a triangular arrangement with some spacing between adjacent cables.  The 

inclusion of some space between the conductors was intended to account for imperfect 

installation. 

Using single-point grounding can eliminate circulating currents.  In this method, the 

concentric conductors are only grounded at one end.  This will result in a standing voltage at 

the ungrounded end of the cable that must be kept to acceptable levels.  Additionally, these 

standing voltages create safety concerns that the design must address.  The standing voltages 

can be reduced by limiting the cable length [54].  None of the cable segments in the test 

system model utilize this grounding method. 
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A commonly used method that significantly reduces circulating currents and allows for 

long cable runs is generally referred to as “cross-bonding.”  In this method, the cable section 

is divided into three equal segments.  At the border between segments, the cable is broken 

and the concentric neutral strands are transposed or “cross-bonded.”  While this would in 

theory eliminate currents circulating in the concentric strands completely, in practical 

applications it does not eliminate them unless the cable is laid in a trefoil configuration, or an 

evenly spaced arrangement with the phase conductors transposed at the junctions as well.  If 

this is not done, cross bonding produces a reduction in circulating currents rather than 

eliminating them.  This method is particularly well suited to long cable segments.  A major 

disadvantage to this method is that splices at the junctions between segments must not create 

a conductive shield path across the splice body [54].  Thus, the splice kits utilized for cross-

bonded circuits will necessarily be different from the other splices in the WPP.  As noted in 

Figure 5-1, several important cable segments in the test system utilize cross-bonded 

concentric conductors. 

Substation Transformer Data 

This example assumes that a single substation transformer will be used.  This is one of 

the common arrangements discussed in [9].  The substation transformer used in the test 

system is a 100/133/167 MVA ONAN/ONAF/ONAF unit with an impedance of 0.25+j9.1%.  

The MVA rating was chosen based on maximum WTG production of 166.7 MVA (100-1.5 

MW WTGs operating at 0.90 pf).  The impedance is based on data from a similar size unit 

applied on a recent project.  It is assumed that the transformer will not be equipped with a 

load tap changer.  WPP transformers are not typically purchased with load tap changers due 

to higher initial and ongoing maintenance costs [9].  Reference [9] recommends avoiding 

them if possible.  Transformers of this type are commonly equipped with no-load tap 

changers [9].  Load flow studies show that the optimal transformer no-load tap changer 

would be set at the 1.025 pu tap (meaning that the high-voltage winding is 141.5kV instead 

of 138kV).  Use of an off-nominal tap is intended to offset a portion of the voltage rise 

through the transformer at high-load levels and avoids high collector system voltages at high 

generation levels. 
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The application of substation transformers in WPPs is discussed in [6] and [9].  In 

determining the optimal number of substation transformers, there are several factors to 

consider.  The first group of factors is the practical.  Of this group, the first is the size of the 

WPP.  When currents at the substation bus exceed 3000A, suitable switches and bus tubing 

become expensive.  Larger WPPs occupy larger geographic areas and these plants 

necessarily have longer collection circuits.  This additional length may produce excessive 

voltage rise, necessitating the construction of a second substation to reduce the circuit length.  

Transporting large transformers in rural areas can also be difficult [9].  

As noted in [4], short circuit currents are one factor in the design of the cable system. 

The short circuit capability of the cables is discussed in [48], [55] (cited in [48]), and [56].  

Additionally, [10] specifies a maximum fault duty for 600A elbows of 25,000A if the fault is 

cleared in 10 cycles.  Fault current magnitudes can be a problem on large WPP systems with 

only one substation transformer. While it may be possible to limit short circuit currents by 

utilizing reactors or higher than normal transformer impedances, installing two smaller 

substation transformers is one way of reducing fault current magnitudes, provided that they 

are not operated in parallel [9].  

References [6] and [9] also discuss the issues surrounding the use of multiple substation 

transformers to increase “availability.”  In a typical utility system, “reliability” (few service 

interruptions) is the primary goal, and tends to result in high levels of redundancy [6].  In 

WPPs, reliability is not as important as “availability” (delivery of available energy).  The 

installation of a second substation transformer—even if it does not increase total 

transformation capacity—may result in increased availability as wind plants operate at less 

than 100% capacity a great deal of the time.  This is especially true if the owner is willing to 

operate the transformer in excess of 100% of rated capacity.  There are several factors to 

consider when making an economic justification to purchase multiple transformers.  These 

include likelihood of a failure, time required for repair or replacement of a failed unit, impact 

on losses (two smaller transformers generally have higher losses than one larger transformer 

with the same total capacity), the installed cost of the transformers, and any ongoing costs 

such as taxes. This may, however, result in increased energy production when one of the 
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transformers is out of service for maintenance or repairs if means to tie the medium voltage 

buses together are provided [9]. 

Transmission Line 

Depending on the layout of the WPP and the location of the point of interconnect, the 

interconnect substation may be located at the WPP or at a separate location with a 

transmission line connecting the WPP substation and the interconnect switchyard [2].  The 

test system does not include a transmission line.  It is assumed that the collection substation 

is located directly adjacent to point of interconnect.  The point of interconnect is the 

substation 138kV bus.   

Reactive Power Resources 

A discussion of WPP reactive power compensation is provided in Chapter 4.  The WTG 

reactive power capability is described in other portions of this chapter.  A discussion of the 

other reactive power resources included in the test system model is included in Chapter 6. 

Concerns in the determination of what reactive power resources are required include 

the power factor range that the WPP is required to provide, voltage(s) at which the power 

factor range must be provided, and whether or not smooth control of voltage or power factor 

is required. Power flow studies are typically used to study the proposed reactive power 

compensation systems to verify that interconnection requirements are met [1]. 

 



www.manaraa.com

  35 

Chapter 6 Case Study in WPP Reactive Power Compensation and 

Centralized Control Methodologies 

Reference [1] alludes to the centralized control systems that are often installed with 

large scale WPPs.  These control systems are discussed further in Chapter 4 and in [25]–[32] 

and [35].  The proposed centralized control system is described in detail in Chapter 4.  It is 

assumed that this central control system will be installed in the WPP substation, monitor the 

voltage and complex power flow at the substation, and utilize a PID control loop to regulate 

bus voltage.  It is assumed that the reactive power dispatch created by the centralized control 

will be communicated to the WTGs using the fiber-optic network that is typically constructed 

alongside the medium-voltage collection system. 

This chapter presents a case study undertaken to estimate the potential energy savings 

caused by the use of the centralized control system described in Chapter 4 if it were used to 

control the test system described in Chapter 5.  The benchmark against which these results 

are compared is a control strategy that divides the reactive power equally amongst the 

WTGs.  

Control System Strategies 

The system losses were calculated with two different control strategies, which are 

described in the paragraphs that follow.  In all cases, it is assumed that all WTGs will operate 

with the same real power injection.  This assumption is made here for simplicity. Reference 

[30] states that a different wind speed prevails at each WTG and that the WTGs will all 

produce different amounts of real power. 

Optimal Strategy 

The first strategy, referred to as “optimal,” assumes that the reactive power necessary to 

achieve the desired set point will be dispatched optimally amongst the turbines and 

substation resources by the centralized control system in order to minimize system losses 

while maintaining bus voltages within the limits described below.  This is the controller 

described in Chapter 4. 
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Uniform Strategy 

The second strategy, referred to as “uniform,” assumes that the central control system 

will divide the reactive power necessary to meet the set point evenly amongst the WTGs.  

This method has been utilized by author and author’s coworkers for design load flow studies 

performed for several WPPs.  Given that it is assumed that all turbines will operate with the 

same real power injection, this assumption is consistent with the dispatch method described 

in [28]–[31].   

A further simplifying assumption used for the uniform strategy is that the substation 

reactive power resources would only be used when the turbine capabilities were exhausted.  

The impact of this assumption is described in more detail below.  The system limitations that 

this method was required to adhere to are not as extensive as the limitations placed on the 

“optimal” strategy and are discussed in more detail below.  No data is available to compare 

this strategy with the commercially available WPP control systems such as the system 

described in [27]. 

Operating Conditions Studied 

The reactive power that can be delivered to the transmission system is obviously 

limited by equipment capabilities.  A key concern in selection of this equipment is that it 

must be capable of meeting the levels specified by the transmission provider [1].  Reference 

[1] discusses the requirements of FERC Order 661-A [23], which provides reactive power 

and low voltage ride through requirements in the portions of the United States outside of the 

ERCOT region.  The reactive power requirements are discussed in more detail in Chapter 4. 

The requirements investigated in this case study are described in more detail in the 

paragraphs that follow. 

 “Window” Requirement 

The first operating condition, referred to as the “window,” only requires that the WPP 

operate with a power factor between 0.95 leading and 0.95 lagging, but does not specify that 

the WPP regulate to a power factor or voltage set point.  This requirement is based on the 

assumption that the system impact study identifies a reliability need to constrain the amount 
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of reactive power that the WPP is allowed to inject (or absorb) into the system, but does not 

identify a need for the WPP to provide voltage regulation.  The issue of what requirements 

apply if no reliability need is identified is discussed in FERC Order 661-A [23].  Several 

respondents expressed concern regarding what requirements would apply if no reliability 

needs were identified.  In issuing Order 661-A, FERC chose not to amend the final rule to 

address these concerns. 

For simplicity it is assumed that the uniform reactive power dispatch will simply 

maintain a unity power factor at the point of interconnect.  For the cases with optimal 

reactive power dispatch, the WPP is allowed to operate at any power factor between 0.95 

leading and 0.95 lagging.   

Requirements with Specific Set Points 

Reference [1] notes that the WPP may be required to regulate voltage or power factor to 

a specific set point.   This case study assumes that the WPP will typically control voltage at 

the point of interconnect to a value specified by the transmission provider.  Reference [1] 

also notes that the minimum reactive power requirements may take different forms.  This 

paper has studied two specific requirements applied in two different ways for a total of four 

scenarios.  These scenarios are discussed in more detail below.   

For the purposes of this case study, it is assumed that the reactive power requirements 

would not apply when the WPP was operating at less than 20% generation.  The UK Grid 

Code [57] requires that the WPP reactive power flow be less than 5% of WPP “rated MW 

output” when real power generation is less than 20% of the facilities capability.  Similarly, 

ERCOT Nodal Protocols [24] only require that the reactive power capabilities be available 

when the WPP is at or above 10% of “nameplate capacity.”  These protocols also note that 

ERCOT may require that the WPP disconnect if it is operating at less than 10% generation 

and unable to support system voltage. 

“Triangle” Requirement 

The “triangle” requires that the wind plant meet any set point within a triangular shaped 

region between a power factor of 0.95 lead and 0.95 lagging.  The magnitude of the reactive 
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power that the wind plant must supply decreases with the real power generation.  This 

requirement is shown in Figure 6-1.  Note that because it is assumed that the requirement is 

relaxed at lower generation levels, the reactive power capability curve is actually shaped like 

a trapezoid.  The language on FERC Order 661-A [23] is slightly different than the language 

in the ERCOT Nodal Protocols [24] and leads the author to interpret FERC Order 661-A [23] 

as requiring a capability curve similar to Figure 6-1 when necessary to maintain reliability.  

This matches the interpretations of FERC Order 661-A provided in [19].  

Figure 6-1:  “Triangular” reactive power capability.  
The required reactive power capability decreases with real power generation.  Note 

that maximum real power generation has been reduced from the total nameplate 
capacity of 150MW to account for real power losses between the WTG terminals and 

the point of interconnect and the curve has been cut off at 30 MW. 

 

“Rectangle” Requirement 

Reference [1] notes that the power factor range is not always constant over the range of 

real power generation.  The “rectangle” condition requires that the WPP supply reactive 

power equivalent to 0.95 power factor leading or lagging at full generation over the entire 

range of real power generation.  In this case, the quantity of reactive power that the WPP 

must be capable of supplying does not decrease with real power generation.  This capability 

is shown in Figure 6-2.  This is very similar to the requirements for new WPPs in the 



www.manaraa.com

  39 

ERCOT Nodal Protocols [24] and somewhat similar to the requirements of the UK Grid 

Code [57]. 

Figure 6-2:  Rectangular reactive power capability requirement.   
Note that the required reactive power capability does not decrease with real power 

generation.  As in Figure 6-1, the maximum real power generation has been reduced 
to reflect the losses between the WTG terminals and the point of interconnect.  

 

Scenario Voltage Ranges 

The reactive power capability of the wind plant varies with voltage.  The reactive 

power supplied by shunt devices such as capacitors, reactors, and cable shunt admittance 

change with the square of voltage.  Reactive losses in the cable system and transformers vary 

with the square of current [1] and current is obviously dependent on voltage.  Additionally, 

the reactive power capability of certain WTGs is dependent on terminal voltage [5].  

Reference [1] notes that the minimum reactive power requirements may need to be met at 

one point of interconnect voltage, or over a range of interconnect voltages.  The implication 

of this is that the voltage(s) at which the WPP must be able to supply the required reactive 

power is an important factor in WPP design.   

For the triangle and rectangle scenarios, this study investigates the difference in losses 

between the optimal and uniform dispatch under two assumptions, both of which are 

consistent with discussion in [1].  The first is that the wind plant is only required to have 
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sufficient reactive power resources available to meet the minimum reactive power flow 

requirements when the bus voltage at the point of interconnect is at 1.0 pu.  The second is 

that the wind plant is required to have sufficient reactive power resources available to meet 

the minimum reactive power flow at the point of interconnect when the voltage at the point 

of interconnect is between 0.95 and 1.05 pu.  As discussed above, it was assumed that the 

reactive power flow requirements would not apply when the WPP was operating at less than 

20% generation.  

Substation Resources Included in Model 

Table 6-2:  Summary of operation scenarios studied. 
Note that the rectangular and triangular cases are included twice, once with the 

requirement that the reactive power capability be met over a range of voltages, and 
the other with the requirement that the reactive power capability be met at one 

specific voltage. 
Reactive Power 
Requirement 

Must Specific Set 
Point Be Met? 

Voltage Range Over Which 
+/-48.1 MVAR Requirement 
Must Be Met 

Required Substation 
Reactive Power 
Equipment 

Window No N/A None 

Rectangular Yes 1.0 pu 1-6 MVAR, 35kV 
Capacitor 

Rectangular Yes 0.95–1.05 pu 2-14 MVAR, 138kV 
Capacitors 

2-15 MVAR, 138kV 
Reactors 

Triangular Yes 1.0 pu 1-6 MVAR, 35kV 
Capacitor 

Triangular Yes 0.95–1.05 pu 2-14 MVAR, 138kV 
Capacitors 

 

OPF solutions show that the maximum real power that can be delivered to the point of 

interconnect is 146.4 MW.  Thus, the WPP must be capable of supplying or absorbing 48.1 

MVAR in order to operate at 0.95 power factor at 100% generation.  The substation reactive 

power resources required to meet the power factor requirements for each of the operation 

scenarios described above were determined by power flow and OPF analysis and are listed in 

Table 6-2.   
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As can be seen in Table 6-2, the quantity of substation reactive power resources can be 

heavily influenced by the voltage range over which the reactive power is expected to be 

delivered.   For example, if the WPP is expected to provide significant quantities of reactive 

power with the point of interconnect bus voltage at high levels, it may not be possible to 

provide this reactive power from the WTGs as the voltage rise caused by reactive power flow 

in the WTG and substation transformers may be objectionable.  If this is the case, it may be 

necessary to install substantial reactive power resources on the substation high voltage bus.  

Additionally, if the WPP is expected to absorb significant quantities of reactive power with 

the point of interconnect bus voltage at low levels, the voltage drop caused by reactive power 

flow in the WTG and substation transformers may be objectionable. 

Cases Studied 

Several cases were run for the scenarios listed above.  These cases are intended to cover 

the full range of operation and are used to determine the difference in system losses between 

the two reactive power dispatch strategies.  These include cases in which the voltage at the 

point of interconnect was at 0.95 pu, 0.975 pu, 1.0 pu, 1.025 pu, and 1.05 pu.  Reference [58] 

specifies that the maximum voltage for a 138kV system is 145kV or 1.05 pu.  This is used as 

the upper limit for the purposes of this case study.  An arbitrary lower limit of 0.95 pu is 

used.  While specific systems may occasionally operate outside of these limits, it is assumed 

that they would be of short duration and would not have a significant influence on the results 

though no data was available to confirm this. 

For each of the four scenarios that required the WPP to meet a specific set point, cases 

were also run over a range of power factors.  For the “triangle” reactive power requirement, 

cases were run at 0.95 and 0.975 power factor lag, 1.0 power factor, and 0.975 and 0.95 

power factor lead.  The choice of 0.95 power factor leading and lagging is based on [23] and.  

For the “rectangle” power factor requirement, cases were run with reactive power injections 

of +/-48.1 MVAR, +/- 33.4MVAR supply, and 0 MVAR.  These are based on 0.95 and 0.975 

power factor lag, 1.0 power factor, and 0.975 and 0.95 power factor lead at full generation 

and are similar to the windows set by [24].  
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For each of the four scenarios that required the WPP to meet a specific voltage set 

point, 260 cases were run.  Of these, 130 cases each were run with the turbines dispatched 

optimally and another 130 cases each with the turbines dispatched uniformly.  Of these 130 

cases, 25 cases each were run with the WPP at 100%, 80%, 60%, 40%, and 20% generation.  

These 25 cases included five cases each with the 138kV bus at 0.95 pu, 0.975 pu, 1.0 pu, 

1.025 pu, and 1.05 pu.  These five cases covered operation of the WPP at unity power factor, 

two cases with the WPP operating with a leading power factor, and two cases with the WPP 

operating with a lagging power factor.  The remaining five cases were run with the WPP 

operating 0% generation (no wind).  These five cases covered operation with the 138kV bus 

at 0.95 pu, 0.975 pu, 1.0 pu, 1.025 pu, and 1.05 pu, and it was assumed that the WPP would 

operate to control the reactive power flow at the point of interconnect to 0 MVAR, though 

there is no specific basis for this assumption.   

For the first “window” scenario, 30 cases each were run for the optimal and uniform 

dispatch.  These covered operation at 100%, 80%, 60%, 40%, 20%, and 0% with the 138kV 

bus voltage operating at 0.95 pu, 0.975 pu, 1.0 pu, 1.025 pu, and 1.05 pu. 

Uniform Dispatch System Limitations 

The only limitations placed on the uniform dispatch solutions are caused by the 

capability of the WTGs.  Figure 4-7 and Table 4-5 in [42] describe a portion of the dynamic 

model of one manufacturer’s DFIG WTG.  These imply that logic exists to prevent the 

terminal voltage at the WTG from straying above 1.10 pu or below 0.90 pu on a steady state 

basis though the model description does not confirm this.  For the purposes of this study, it is 

assumed that the controls in the individual WTGs will have logic capable of overriding the 

reactive power request from the central control system if this request would cause the 

terminal voltage (690V bus) to fall outside of the range between 0.90 pu and 1.10 pu and 

reduce (or increase) the reactive power request to keep the WTG within its limits.  It is also 

assumed that the centralized control system would not act to limit voltages on the 35kV 

collection system. 
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Optimal Dispatch System Limitations 

One major advantage of using the OPF-based centralized control is the ability to 

prevent the system from operating in a fashion that would exceed predetermined limits.  The 

limits placed on the OPF solution and the justifications for them are described in the 

following paragraphs. 

Current Limitations 

In the design of new large-scale WPPs, the maximum load is determined by the total 

maximum WTG generation capability.  This is easy to calculate, and WPP collection systems 

are generally deliberately designed such that current limitations will not be exceeded.   

Voltage Limitations 

The discussion of voltage limitations provided in this section is based on analysis used 

by author and author’s coworkers in the design of several medium voltage collection 

systems. 

• Reference [10] specifies a maximum continuous operating voltage of 36.6kV or 

1.061 pu on a 34.5kV base for cable elbows. 

• Reference [11] specifies a maximum design voltage of 22kV for 35kV 

terminators.  This is 1.10 pu on 34.5kV base 

• Reference [12] does not specify a maximum continuous operating voltage for 

cable splices.  For the purposes of this paper, it is assumed that the equipment 

ratings would not be more restrictive than ratings of the cable and elbows. 

• Reference [13] specifies that the operating voltage for underground cable should 

not be higher than the rated voltage by more than 5% continuously and 10% for 

an emergency lasting not longer than 15 minutes.  This implies that 35kV cable 

should not be operated continuously in excess of 36.75kV, or 1.065 pu on a 

34.5kV base, and that the cable should not operate at a voltage higher than 

1.116 on a 34.5kV base for longer than 15 minutes. 
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• Reference [45] limits the secondary voltage to 1.05 pu at full nameplate kVA 

rating and 0.80 power factor and 1.10 pu at no load.  This implies that the 

primary winding voltage is allowed to be whatever is necessary to achieve a 

1.05 pu secondary voltage.  In the case of a WTG step up transformer, [59] 

defines the primary winding as the low voltage winding and the secondary 

winding as the medium-voltage winding provided that the transformer is 

suitable for step-up operation.  The normal service conditions defined in [45] 

are for step down operation.  If the 1750kVA transformer described in Chapter 

5 is loaded to 1750kVA at 0.80 pf, the voltage rise through the transformer 

would result in a 690V winding voltage of approximately 1.09 pu.  This 

calculation is shown in (6.1) below. 

1.05+ 0.0074+ j0.0574( )• 0.8− j0.6( ) =1.091  (6.1) 

The 690V winding voltage that would result from operating the WTG at full 

rated real and reactive power (1500kW and 726kVAR) is approximately 1.08pu.  

This calculation is shown in (6.2) below. 

1.05+ 0.0074+ j0.0574( )•1500− j726
1750

=1.081  (6.2) 

• Surge arresters are commonly used in the medium-voltage collection system to 

protect the cable and transformers from voltage transients.  Reference [60] 

recommends choosing surge arresters with 27kV duty cycle ratings for the 

substation transformer and 30kV duty cycle ratings elsewhere.  These 

correspond to maximum continuous overvoltage ratings of 22kV and 24.4kV 

(line to ground), respectively [61].  This is 1.104 and 1.225 pu on a 19.92kV 

base.  Reference [61] recommends utilizing an arrester with an MCOV rating 

that is higher than the maximum expected phase-ground voltage.   

The voltage limitations on the 34.5kV buses were set at 0.88 and 1.075 pu.  The upper 

limit is somewhat above the voltage levels described in the standards referenced above which 

would imply a limit of 1.05 or 1.061 pu but allows for the WTG to operate closer to full 
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reactive capability.  This is consistent with the limits operating voltage limits typically 

utilized by author and author’s coworkers. 

The minimum and maximum WTG terminal (690V) buses were set at 0.90 and 1.10 pu 

as discussed above. 

MATPOWER Model 

A model was built in the MATPOWER software package [41].  All branches 

(transformers and cable segments) and WTGs were modeled explicitly.  The substation 

138kV bus was treated as the slack bus.  A load equal to the total WTG production as 

measured at the WTG terminals (i.e., 150MW for the 100% generation cases; 120 MW the 

80% generation cases) was placed at the substation 138kV bus so that the slack generator 

would only supply system losses. 

The MATPOWER software package does not have the capability to minimize system 

losses, but does provide an AC OPF algorithm that can minimize generation cost [41].  For 

the optimal model, both the upper and lower voltage limits on the substation 138kV bus were 

placed at the value desired for that particular case.  The reactive load on the substation 

138kV bus was set at the level that was required to be delivered to the bulk transmission 

system for that particular case.  The incremental cost for the WTGs was set at $0/MWHr.  

The slack bus generator was set at $80/MWHr to force the slack generator to generate as 

little real power as possible.  These values were arbitrarily chosen, any values would suffice 

as long as the incremental costs for the WTGs were lower than the slack bus generator.  For 

the slack bus generator, the maximum and minimum reactive power generation were set to 

zero to force all reactive power to be generated by the WPP.  The maximum power limit for 

each WTG was set at the desired value for that case (i.e., 1.5 MW for 100% generation, 1.2 

MW for 80% generation, etc). 

MATPOWER also possesses a standard AC power flow algorithm that was used for the 

uniform cases.  For these cases, the WTG real power generation was set at the required level.  

The slack bus voltage was set at the value desired for that case.  The slack bus load was set 

with zero reactive power demand.  Each WTG was treated as a P-Q bus with the real power 

injection set to the desired value for that case (i.e., 1.5 MW for 100% generation, 1.2 MW for 
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80% generation, etc). The reactive power injection for each WTG was changed until the 

reactive power injection by the slack bus generator reached the desired value. If a particular 

WTG 690V bus voltage reached dropped below 0.90 pu or exceeded 1.10 pu, that unit was 

changed to a P-V bus and the other WTG reactive power injections were adjusted 

accordingly. 

Results 

In total, 1100 cases were run.  The differences in losses between the optimal and 

uniform dispatch were then compared for each case.  A summary of the potential energy 

savings at 100% generation created by optimally dispatching reactive power resources is 

provided in Table 6-3. 

Table 6-3:  Summary of potential real power savings at 100% generation. 
Note that in certain cases, the optimal reactive power dispatch actually produces 

higher losses than the uniform dispatch case due to the additional voltage constraints 
imposed on the solution. 

Reactive Power Requirement Voltage Range Over Which 
+/-48.1 MVAR Requirement 
Must Be Met 

Range of Potential Power 
Savings Due to Optimal 
Dispatch of Reactive Power 
(kW) 

Window N/A 6.8–11.3 

Rectangular 1.0 pu -304.6–127.0 

Rectangular 0.95–1.05 pu -230.0–354.0 

Triangular 1.0 pu -304.2–127.0 

Triangular 0.95–1.05 pu -230.3–197.2 

 

The cases in which the optimal solution actually produced higher losses are caused by 

the voltage constraints that are placed on the optimal reactive power strategy but not on the 

uniform strategy.  These cases are expected to occur infrequently as they are caused by cases 

where the transmission system voltage is low and the WPP is absorbing large quantities of 

reactive power or the transmission system voltage is high and the WPP is generation large 

quantities of reactive power.  

The difference in losses was then multiplied by the hours per year that the WPP would 

be expected to operate at that particular level.  From this information, the total difference in 
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losses between the various scenarios can be calculated.  Unfortunately, data showing how 

many years a typical WPP operates at a given level were not available and were estimated.  

In estimating the number of hours per year that the WPP would operate at a particular level, 

the assumptions listed below were made. 

• When a specific set point is required to be met, the WPP will control voltage at the 

point of interconnect to a value that varies based on system conditions but will be 

between 1.0 pu and 1.05 pu. 

• The WPP will be connected to a system that is neither strong nor weak, implying that 

the WPP will have a significant impact on system voltage levels, but will not always 

be capable of supplying (or absorbing) sufficient reactive power to regulate the bus 

voltage to the desired set-point.  This implies that the bus voltage will stray from the 

set point during normal operation, but should remain close. 

• The WPP will spend the hours listed in Table 6-4 per year at each respective 

generation level, regardless of the case.  This data was taken from the average of 

several recent WPP projects. 

Table 6-4:  Hours spent per year at each generation level. 
Note that this produces a yearly capacity factor of approximately 46%. 

Generation 
Level 

Hours/Year 

100% 1100 

80% 1300 

60% 1400 

40% 1600 

20% 2000 

0% 1360 

 

With the assumptions described above, the hours that WPP operations would 

approximate each case was estimated, and the total difference in losses between the uniform 

and optimal dispatch were calculated and appear in Table 6-5. 
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Table 6-5:  Estimated annual energy savings. 
Reactive 
Power 
Requirement 

Voltage Range Over Which 
+/-48.1 MVAR Requirement 
Must Be Met 

Estimated Annual 
Energy Savings 
(MWhr) 

Window N/A 18 

Rectangular 1.0 pu 372 

Rectangular 0.95–1.05 pu 1,358 

Triangular 1.0 pu 140 

Triangular 0.95–1.05 pu 339 
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Chapter 7 Discussion of Results 

System Losses 

The results show that the majority of the difference between the optimal and uniform 

dispatches comes from utilizing the substation reactive power resources more effectively.  To 

demonstrate this, five cases were run using the “rectangular” case with the 0.95 –1.05 pu 

voltage requirement.  The uniform reactive power dispatch strategy described in Chapter 6 

was used except that the substation resources were utilized in the same manner as the results 

from the optimal dispatch strategy.  The results of this are shown in Table 7-1. 

Table 7-1:  Comparison between substation resource dispatch strategies. 
“Uniform-Optimal” utilizes the original uniform dispatch strategy.  “Uniform 

Alternate-Optimal” utilizes the alternate dispatch described above. 
 Difference in Losses (kW) 

Reactive 
Power Flow 
at POI 

48.1 
MVAR 
Supply 

33.4 
MVAR 
Supply 

0 
MVAR 

33.4 
MVAR 
Absorb 

48.1 
MVAR 
Absorb 

Uniform - 
Optimal 147.5 178.6 6.3 204.1 347.3 

Uniform 
Alternate - 
Optimal 27.9 10.5 6.3 4.1 1.4 

 

The OPF results for the “window” cases offer some insight as to the optimal operating 

point for the WPP.  Surprisingly, the results show that it is most efficient for the wind farm to 

deliver between 1.4 and 4.1 MVAR to the point of interconnect depending on the voltage at 

the point of interconnect.  It was anticipated that the optimal operating point would be to 

have the WPP absorb modest quantities of reactive power. 

Reactive Power Injections 

Normal Conditions 

As expected, the results show an inverse relationship between the total resistance 

measured at the WTG terminals and the reactive power injection under normal operating 
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conditions.  Also as expected, the WTGs that are closest electrically to the point of 

interconnect inject the most reactive power while the WTGs that are furthest electrically 

inject the least.  This relationship is illustrated in Figure 7-1, which shows a plot of the 

reactive power injected by the WTGs on two of the test system’s six collection circuits 

versus total resistance between the WTG terminals and the point of interconnect.  Circuit 

F1B is the collection circuit containing the WTG that is electrically closest to the point of 

interconnect.  Circuit F4 contains the most electrically distant WTG.  The case shown in 

Figure 7-1 was chosen because it was assumed that this would be the maximum generation 

case that occurs most frequently. 

Figure 7-1:  WTG reactive power injection versus system resistance under normal 
conditions utilizing the optimal reactive power dispatch strategy. 

Note that only two collector circuits are shown for clarity.  The figure shows the 
results for Case 18 from the “triangular” reactive power requirement. 

 

As can be seen in Figure 7-1, the relationship between resistance to the point of 

interconnect and reactive power injection is not perfect. This is to be expected because losses 

in a given branch are proportional to resistance multiplied by the square of the current and 

the optimal reactive power injection is therefore dependent on the other WTGs.  The case 

shown in Figure 7-1 is expected to be a fairly common occurrence.  In this case, the WPP is 

operating at full capacity, is supplying 0 MVAR to the transmission system, and the point of 
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interconnect is operating at 1.025 pu.  In this case, the solution is not limited by any voltage 

constraints. 

Extreme Conditions 

Figure 7-2:  WTG reactive power injection versus system impedance under extreme 
conditions utilizing the optimal dispatch strategy. 

Note that the x-axis begins at 3.4 pu.  Total system impedance is used in lieu of the 
system resistance that was used in Figure 6-1 as voltage rise is affected by total 

system impedance.  This figure shows the results for Case 21 from the “triangular” 
reactive power requirement. 

 

While the results show that the optimal reactive power controller will generally reduce 

system losses, under certain situations, the optimal solution will actually produce losses that 

exceed those produced by the uniform cases.  This is due to more restrictive voltage 

constraints that are imposed on the optimal solution over the similar cases utilizing the 

uniform dispatch method.  These situations arise in two fashions.  The first is where the 

interconnect bus voltage is high and the WPP is expected to supply significant quantities of 

reactive power.  In these cases, 34.5kV bus voltages restrain the OPF and some of the 

electrically more distant WTGs absorb reactive power to reduce the voltages on the more 

remote 34.5kV buses.  The WTGs that are closer to the substation in turn generate additional 

reactive power to compensate.  A similar situation occurs at low interconnect bus voltages 

(0.95 pu) when the WPP is being asked to absorb reactive power.  The cases where this 
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happens are expected to occur infrequently but are more extreme in cases where the WPP 

does not have significant substation reactive power resources.   

Figure 7-3:  WTG reactive power injection versus system impedance under extreme 
conditions utilizing the uniform dispatch strategy. 

Note that only two collector circuits are shown for clarity and that the x-axis begins 
at 3.4 pu.  This figure shows the results for Case 21 from the “triangular” reactive 

power requirement. 

 

Figure 7-2 and Figure 7-3 are scatter plots of reactive power injections versus system 

impedances for Case 21 with the “triangular” reactive power requirement.  In this case, the 

bus voltage at the point of interconnect is 1.05 pu and the WPP is asked to deliver maximum 

reactive power.  Figure 7-2 shows a plot of the reactive power injected by the WTGs on two 

of the test system’s six collection circuits versus total system impedance between the WTG 

terminals and the point of interconnect. 

Figure 7-2 clearly shows that when utilizing the optimal dispatch algorithm, the WTGs 

can be divided into two groups.  The first group is injecting close to maximum reactive 

power; the second, smaller, group is absorbing close to maximum reactive power to hold bus 

voltages on the medium-voltage collection system within limits.  In this case, the correlation 

between reactive power injection and system impedance is significantly less than in the case 

depicted in Figure 7-1.  However, the general trend is that the WTGs that are more distant 

electrically from the point of interconnect are more likely to be absorbing reactive power 
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than the WTGs that are closer to the point of interconnect.  There is a significant contrast 

between the reactive power injections shown in Figure 7-2 and the injections from the 

corresponding uniform dispatch case, which are shown in Figure 7-3.   

As can be seen in Figure 7-3, the reactive power injections are uniform with the 

exception of some of the more distant WTGs, whose injections are reduced to prevent the 

WTG terminal voltage from exceeding 1.10 pu.  Note that in the uniform dispatch case, all 

WTGs inject reactive power into the system and none absorbs reactive power.  This is 

significantly different from the results obtained utilizing the optimal dispatch algorithm. 

Voltage Profile 

Normal Conditions 

Also of interest are the differences between the voltage profiles created by the two 

reactive power dispatch methods.  A plot of 34.5kV bus voltages versus system impedance 

created by the optimal dispatch method is shown in Figure 7-4.  Note that these bus voltages 

are from the same case as the reactive power injections in Figure 7-1. 

Figure 7-4: WTG 34.5kV bus voltage versus system impedance under normal 
conditions utilizing the optimal dispatch strategy. 

This figure shows the results for the optimal strategy for Case 18 from the 
“triangular” reactive power requirement. 
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Figure 7-5 shows a plot of bus voltages versus system impedance for the same case as 

Figure 7-4 but with the results from the uniform dispatch method.  As can be seen by 

comparing Figure 7-4 to Figure 7-5, the voltage profile created by the two dispatch strategies 

is similar under normal circumstances.  Table 7-2 shows a summary of the 35kV bus voltage 

profiles resulting from Case 18 with the “triangular” reactive power requirement.  

Figure 7-5:  WTG 34.5kV bus voltage versus system impedance under normal 
conditions utilizing the uniform dispatch strategy. 

This figure shows the results for the uniform strategy for Case 18 from the 
“triangular” reactive power requirement. 

 

Table 7-2: Summary of voltage profiles created by two reactive power dispatch 
strategies under normal conditions. 

 Optimal 
Strategy 

Uniform 
Strategy 

Minimum 34.5kV Bus 
Voltage 

1.0165 pu 1.0165 pu 

Maximum 34.5kV Bus 
Voltage 

1.0477 pu 1.0504 pu 

Average 34.5kV Bus 
Voltage 

1.0283 pu 1.0293 pu 

 

Table 7-2 shows that under conditions where bus voltages are less than the constraints, 

the voltage profiles created by the two dispatch strategies are similar.  The voltage profile for 
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the optimal strategy is somewhat less than the uniform strategy; however, some of this is due 

to the fact that the optimal solution deployed one 6 MVAR substation capacitor whereas the 

uniform strategy deployed none. 

Extreme Conditions 

Under extreme conditions, the voltage profile created by the two strategies differs 

significantly.  The optimal strategy is forced to constrain the 34.5kV bus voltages to 1.075pu, 

whereas the uniform strategy only restricts the 690V bus voltages to 1.10 pu or less.  Figure 

7-6 and Figure 7-7 show the voltage profile on the 34.5kV system under the same conditions 

as the scatter plots in Figure 7-2 and Figure 7-3.  The voltage profile created by the optimal 

strategy under these conditions is shown in Figure 7-6. 

Figure 7-6:  WTG 34.5kV bus voltage versus system impedance under extreme 
conditions utilizing the optimal dispatch strategy. 

This figure shows the results for the optimal solution to Case 21 with the “triangular” 
reactive power requirement. 

 

 

The voltage profile created by the uniform dispatch strategy under the same conditons 

as the results shown in Figure 7-6 is shown in Figure 7-7.  These figures clearly show that 

there is a siginificant difference between the voltage profiles created using the optimal and 
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uniform strategies under more extreme conditions.  As can be seen in Figure 7-6, the 

requirement to maintain the 34.5kV bus voltages at or below 1.075 is a much more severe 

requirement than the requirement to maintain the 690V bus voltages at no more than 1.10 pu.  

Table 7-3 shows a summary of the collection system 34.5kV bus voltages under the more 

extreme conditions.  Note that the bus voltages created by the uniform strategy are 

significantly higher than the voltages created by the optimal strategy. 

Figure 7-7:  WTG 34.5kV bus voltage versus system impedance under extreme 
conditions utilizing the uniform dispatch strategy. 

This figure shows the results or the uniform solution to Case 21 with the “triangular” 
reactive power requirement. 

 

Table 7-3:  Summary of bus voltage profiles created by two reactive power strategies 
under extreme conditions.  

 Optimal 
Strategy 

Uniform 
Strategy 

Minimum 34.5kV Bus 
Voltage 

1.0576 pu 1.0571 pu 

Maximum 34.5kV Bus 
Voltage 

1.0750 pu 1.0908 pu 

Average 34.5kV Bus 
Voltage 

1.0679 pu 1.0706 pu 
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Cost Effectiveness 

The net present value method of making project investment decisions is described in 

[62].  In order to determine the present value of the losses that are avoided by using the 

proposed control strategy over the “uniform” strategy, it is first necessary to determine the 

present value of the avoided losses and the present value of incremental expenditures 

necessary to purchase and install the OPF based control system.  The net present value is 

then the money remaining after the present value of the incremental cost of the improvements 

is subtracted from the present value of the avoided losses. 

Present Value of Avoided Losses 

The present value of the avoided losses is obviously dependent on the cost of the 

energy produced by the WPP.  Lawrence Berkeley National Laboratory has compiled market 

data on WPPs and the power purchase agreements (PPA) through which the energy is 

typically sold.  A summary of this research is provided in [63].  The typical WPP built in 

2009 averaged 91 MW, was owned by an independent power producer, and the energy was 

sold through a long term PPA.  For projects constructed in 2009, the average sale price of 

wind energy sold under a power purchase agreement was $61/MWhr [63].  According to 

Figure 20 in [63], PPA prices for projects completed in 2009 ranged from $40/MWhr to 

$85/MWhr.  These prices do not include the renewable energy production tax credit (PTC) 

[63].  Discussion in [64]–[66] provides an outline of a PPA that was proposed in proceedings 

before the Iowa Utilities Board.  In this case, an independent power producer offered to sell 

energy from two WPPs for a period of 25 years at a cost of $54.06/MWhr with a yearly cost 

increase of 2% [64], [65]. 

The PTC is available for the first 10 years after commercial operation commences and 

is adjusted for inflation [67], [68].  In tax year 2010, the value of this tax credit was 

$0.022/kWhr or $22/MWhr [68], [69]. 

Discussion in [66] quotes testimony from the independent power producer where they 

stated that they generally do not proceed with a project unless the return on equity is in “the 

teens or the twenties” (quoted on p. 80) whereas the regulated utility was requesting a return 

on equity of 12.2% to build its own WPPs [66]. 
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Reference [70] provides formulas for calculating the present value of a series of cash 

flows.  The formula for calculating the present value of a geometrically increasing series is 

provided in Equation (4.26) in [70] (p. 147).  This is repeated in (7.1) below.  

P = A1
1− 1+ g( )N 1+ i( )−N

i− g
if i ≠ g

 

or 

P = N ⋅A1
1+ i

if i = g  

(7.1) 

Where:  

• P is the present value of the series of cash flows 

• A1 is the cash flow at the end of the first period 

• g is the change, in percent, of the cash flow between consecutive periods 

• i is the interest rate 

• N is the number of periods 

Table 7-4:  Summary of loss value scenarios. 
 High Energy 

Value 
Middle 
Energy Value 

Low Energy 
Value 

Initial PPA Energy Price 
($/MWhr) 

$80 $60 $40 

Minimally Attractive Rate of 
Return (%) 

10% 15% 20% 

PPA Escalation (%/year) 2% 2% 2% 

PPA Duration (years) 25 25 25 

Initial PTC Value ($/MWhr) $22 $22 $22 

PTC Inflation Adjustment 
(%/year) 

3.2% 3.2% 3.2% 

PTC Duration (Years) 10 10 10 

Calculated Present Value of 
Avoided Losses ($/MWhr) 

$1000 $560 $320 
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It is possible to calculate a range of possible values for a MWhr of loss that is avoided 

each year.  Because of the substantial variation in values provided in the information above, 

three scenarios were calculated using (7.1) and are shown in Table 7-4.  The assumed 

inflation rate is based on information presented in [71] which implies an annual inflation rate 

of 3.2% in the 30 years between 1981 and 2010. 

Present Value of Costs of the Proposed Control System 

It is difficult to forecast the costs of the proposed control system and the Author is not 

aware of any published data that would serve as a useful reference.  As mentioned in Chapter 

4, much of the hardware necessary to implement the control system is already present at most 

WPPs.  The development costs for the control software would be spread across several 

WPPs; however, there would be costs associated with setting up and tuning the algorithm for 

each individual WPP.   Estimated incremental costs associated with the installation and 

maintenance of the proposed system were calculated using (7.1) and are given in Table 7-5. 

Table 7-5:  Assumed incremental costs of proposed control system. 
 High Energy 

Value 
Middle 
Energy Value 

Low Energy 
Value 

Upfront Set-Up Costs $100 000 $100 000 $100 000 

Average Yearly Maintenance 
Costs ($/Year) 

$10 000 $10 000 $10 000 

Minimally Attractive Rate of 
Return (%) 

10% 15% 20% 

Inflation Rate (%/year) 3.2% 3.2% 3.2% 

Site Life (years) 25 25 25 

Calculated Present Value of 
System Costs 

$220 000 $180 000 $160 000 

 

The estimates presented in Table 7-5 are not based on any published data but rather on 

the assumption that the proposed system is an incremental improvement over the centralized 

control systems that are already installed at a large number of WPPs. 
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Net Present Value of Proposed Control System 

Using the values presented in Table 6-5, Table 7-4, and Table 7-5, it is possible to 

calculate the net present value of the proposed control system.  The estimated net present 

value of the control system proposed in Chapter 4 is shown in Table 7-6.  As expected, the 

cost effectiveness depends heavily on the amount of reactive power that the WPP is expected 

to provide to the transmission system and the value of the energy.  Using the assumptions 

described above, the proposed control system can be justified on the basis of cost savings in 

7 of the 15 cases that were analyzed. 

Table 7-6:  Estimated net present value of proposed control system. 
Reactive 
Power 
Requirement 

Voltage Range 
Over Which +/-
48.1 MVAR 
Requirement 
Must Be Met 

Estimated 
Annual 
Energy 
Savings 
(MWhr) 

High  
Value 
Energy 

Middle 
Value 
Energy 

Low 
Value 
Energy 

Window N/A 18 ($202 000) ($169 920) ($154 240) 

Rectangular 1.0 pu 372 $152 000 $28 320 ($40 960) 

Rectangular 0.95–1.05 pu 1,358 $1 138 000 $580 480 $274 560 

Triangular 1.0 pu 140 ($80 000) ($101 600) ($115 200) 

Triangular 0.95–1.05 pu 339 $119 000 $9 840 ($51 520) 

 

Significant Assumptions 

Several significant assumptions that were made and conjecture on their potential impact 

on the study results are given below. 

• While there has been some discussion of centralized control systems in the literature, 

a discussion of which is provided in Chapter 4, the strategies used by commercial 

centralized control systems is unknown.  The author has utilized the uniform dispatch 

method described here for recent studies; however, it should not be considered an 

accurate representation of a commercially available system. 

• As discussed above, a significant portion of the difference between the optimal and 

uniform dispatch methodologies comes from the assumption that the uniform dispatch 

will utilize the substation resources last, whereas the optimal dispatch tends to use 
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them first.  If it were assumed that the uniform dispatch utilized the substation 

reactive power resources first, the difference between the two methods would be less. 

• Data showing the hours that the WPP would spend at each generation level were 

taken from the average of several sites and are believed to be typical. 

• Data showing the variation of the interconnect bus voltage and reactive power 

injections over time were not available and would likely vary considerably from 

location to location.  This means that the hours spent operating at each case were not 

available, and assumptions were made to create this data. 

• This study assumes that the WTGs will all operate at the highest real power injection 

allowed by the prevailing winds at all times.  For simplicity, it was assumed that all 

WTGs would operate at an equal generation level.  Under normal operations, the 

wind speed may be different across the wind plant.  This may cause individual WTGs 

to produce different levels of real power at the same time [30]. 

• No data was available to provide an accurate cost estimate of the incremental costs of 

the proposed control system.  Data used to determine cost effectiveness is estimated. 

Conclusion 

Using the data presented here, it appears that while a centralized control system that 

integrates an OPF algorithm will reduce system losses, the reduction in losses is smaller than 

the author had anticipated.  An important advantage of this control system is the ability to 

force the reactive power dispatch to respect voltage constraints.   

It appears that an economic justification for utilizing the proposed OPF based 

centralized control system may exist at WPPs with higher energy values.  The author feels 

that the control system would be most useful in very large WPPs with long collection 

circuits.  In these WPPS, the long collection circuits cause increased losses and voltage 

regulation problems and a control system that accounts for the system impedance between 

the WTG terminals and the point of interconnect would provide the most benefits in such a 

system. 
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Oportunities for Further Work 

Opportunities for further advancement of the control system are provided in Chapter 4.  

The analysis of cost effectiveness could be refined in several ways.  Most of these revolve 

around clarifying the significant assumptions listed above.  The estimate of the incremental 

loss savings could be improved by using real WPP systems with historical data showing the 

number of hours that the wind plant operates at various combinations of interconnect bus 

voltage and real and reactive power injections.  Additionally, the estimate of incremental loss 

savings could be improved by comparing the proposed control system to a commercial 

control system.  The economic analysis could be improved by using economic data from 

actual projects and by developing a detailed estimate of the incremental cost to install the 

proposed OPF based centralized control system. 

This thesis has presented detailed steady-state studies.  Another possibility for further 

study is detailed time-domain studies to show the dynamic performance of the control system 

to changing system conditions. 
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Appendix 1 Test System Medium Voltage Cable Impedances 

Table A1-1:  35kV cable impedances used in test system. 
From 
Bus 
Name 

To 
Bus 
Name 

Length 
(ft) Cable Type 

R1 
(Ohms) 

X1 
(Ohms) 

B1 
(Micro 
Siemens) 

R1 
(pu) 

X1 
(pu) B1 (pu) 

Sub T1 5000 Al-4/0 AWG 0.5170 0.2600 80.1100 0.0434 0.0218 0.000954 
T1 T2 1400 Al-4/0 AWG 0.1448 0.0728 22.4308 0.0122 0.0061 0.000267 
T2 T3 1400 Al-4/0 AWG 0.1448 0.0728 22.4308 0.0122 0.0061 0.000267 
T3 T4 1400 Al-4/0 AWG 0.1448 0.0728 22.4308 0.0122 0.0061 0.000267 
T4 T5 1400 Al-4/0 AWG 0.1448 0.0728 22.4308 0.0122 0.0061 0.000267 
T5 T6 1400 Al-4/0 AWG 0.1448 0.0728 22.4308 0.0122 0.0061 0.000267 

          
Sub JB11 10000 

Al-1000 kcmil 
XB 0.2190 0.4270 270.4600 0.0184 0.0359 0.003219 

JB11 T7 1400 Al-4/0 AWG 0.1448 0.0728 22.4308 0.0122 0.0061 0.000267 
T7 T8 1400 Al-4/0 AWG 0.1448 0.0728 22.4308 0.0122 0.0061 0.000267 
T8 T9 1400 Al-4/0 AWG 0.1448 0.0728 22.4308 0.0122 0.0061 0.000267 
T9 T10 1400 Al-4/0 AWG 0.1448 0.0728 22.4308 0.0122 0.0061 0.000267 
T10 T11 1400 Al-4/0 AWG 0.1448 0.0728 22.4308 0.0122 0.0061 0.000267 
JB11 JB12 100 Al-1000 kcmil 0.0025 0.0042 2.7046 0.0002 0.0004 0.000032 
JB12 T12 1400 Al-500 kcmil 0.0647 0.0643 30.1224 0.0054 0.0054 0.000359 
T12 T13 1400 Al-500 kcmil 0.0647 0.0643 30.1224 0.0054 0.0054 0.000359 
T13 T14 1400 Al-4/0 AWG 0.1448 0.0728 22.4308 0.0122 0.0061 0.000267 
T14 JB13 100 Al-4/0 AWG 0.0103 0.0052 1.6022 0.0009 0.0004 0.000019 
JB13 T15 1400 Al-4/0 AWG 0.1448 0.0728 22.4308 0.0122 0.0061 0.000267 
T15 T16 1400 Al-4/0 AWG 0.1448 0.0728 22.4308 0.0122 0.0061 0.000267 
JB13 T17 1400 Al-4/0 AWG 0.1448 0.0728 22.4308 0.0122 0.0061 0.000267 
T17 T18 1400 Al-4/0 AWG 0.1448 0.0728 22.4308 0.0122 0.0061 0.000267 
T18 T19 1400 Al-4/0 AWG 0.1448 0.0728 22.4308 0.0122 0.0061 0.000267 
T19 T20 1400 Al-4/0 AWG 0.1448 0.0728 22.4308 0.0122 0.0061 0.000267 
T20 T21 1400 Al-4/0 AWG 0.1448 0.0728 22.4308 0.0122 0.0061 0.000267 
JB12 T22 1400 Al-4/0 AWG 0.1448 0.0728 22.4308 0.0122 0.0061 0.000267 
T22 T23 1400 Al-4/0 AWG 0.1448 0.0728 22.4308 0.0122 0.0061 0.000267 
T23 T24 1400 Al-4/0 AWG 0.1448 0.0728 22.4308 0.0122 0.0061 0.000267 
T24 T25 1400 Al-4/0 AWG 0.1448 0.0728 22.4308 0.0122 0.0061 0.000267 

          Sub JB21 10000 Al-1000 kcmil 0.2520 0.4220 270.4600 0.0212 0.0355 0.003219 
JB21 T26 1400 Al-4/0 AWG 0.1448 0.0728 22.4308 0.0122 0.0061 0.000267 
T26 T27 1400 Al-4/0 AWG 0.1448 0.0728 22.4308 0.0122 0.0061 0.000267 
T27 T28 1400 Al-4/0 AWG 0.1448 0.0728 22.4308 0.0122 0.0061 0.000267 
T28 T29 1400 Al-4/0 AWG 0.1448 0.0728 22.4308 0.0122 0.0061 0.000267 
T29 T30 1400 Al-4/0 AWG 0.1448 0.0728 22.4308 0.0122 0.0061 0.000267 
JB21 T31 1400 Al-4/0 AWG 0.1448 0.0728 22.4308 0.0122 0.0061 0.000267 
T31 T32 1400 Al-4/0 AWG 0.1448 0.0728 22.4308 0.0122 0.0061 0.000267 
T32 T33 1400 Al-4/0 AWG 0.1448 0.0728 22.4308 0.0122 0.0061 0.000267 
T33 T34 5000 Al-4/0 AWG 0.5170 0.2600 80.1100 0.0434 0.0218 0.000954 
T34 T35 1400 Al-4/0 AWG 0.1448 0.0728 22.4308 0.0122 0.0061 0.000267 
T35 T36 1400 Al-4/0 AWG 0.1448 0.0728 22.4308 0.0122 0.0061 0.000267 
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Table A1-1:  35kV cable impedances used in test system (continued). 
From 
Bus 
Name 

To 
Bus 
Name 

Length 
(ft) Cable Type 

R1 
(Ohms) 

X1 
(Ohms) 

B1 
(Micro 
Siemens) 

R1 
(pu) 

X1 
(pu) B1 (pu) 

T36 T37 1400 Al-4/0 AWG 0.1448 0.0728 22.4308 0.0122 0.0061 0.000267 
T37 T38 1400 Al-4/0 AWG 0.1448 0.0728 22.4308 0.0122 0.0061 0.000267 
JB21 T39 6100 Al-4/0 AWG 0.6307 0.3172 97.7342 0.0530 0.0266 0.001163 
T39 T40 1400 Al-4/0 AWG 0.1448 0.0728 22.4308 0.0122 0.0061 0.000267 
T40 T41 1400 Al-4/0 AWG 0.1448 0.0728 22.4308 0.0122 0.0061 0.000267 
T41 T42 1400 Al-4/0 AWG 0.1448 0.0728 22.4308 0.0122 0.0061 0.000267 
T42 T43 1400 Al-4/0 AWG 0.1448 0.0728 22.4308 0.0122 0.0061 0.000267 

          
Sub JB31 15000 

Al-1000 kcmil 
XB 0.3285 0.6405 405.6900 0.0276 0.0538 0.004829 

JB31 T44 1400 Al-4/0 AWG 0.1448 0.0728 22.4308 0.0122 0.0061 0.000267 
T44 T45 1400 Al-4/0 AWG 0.1448 0.0728 22.4308 0.0122 0.0061 0.000267 
T45 T46 1400 Al-4/0 AWG 0.1448 0.0728 22.4308 0.0122 0.0061 0.000267 
T46 T47 1400 Al-4/0 AWG 0.1448 0.0728 22.4308 0.0122 0.0061 0.000267 
T47 T48 1400 Al-4/0 AWG 0.1448 0.0728 22.4308 0.0122 0.0061 0.000267 
T48 T49 1400 Al-4/0 AWG 0.1448 0.0728 22.4308 0.0122 0.0061 0.000267 
JB31 T50 8000 Al-500 kcmil 0.3696 0.3672 172.1280 0.0311 0.0309 0.002049 
T50 T51 1400 Al-500 kcmil 0.0647 0.0643 30.1224 0.0054 0.0054 0.000359 
T51 T52 1400 Al-500 kcmil 0.0647 0.0643 30.1224 0.0054 0.0054 0.000359 
T52 T53 1400 Al-500 kcmil 0.0647 0.0643 30.1224 0.0054 0.0054 0.000359 
T53 T54 1400 Al-500 kcmil 0.0647 0.0643 30.1224 0.0054 0.0054 0.000359 
T54 T55 1400 Al-4/0 AWG 0.1448 0.0728 22.4308 0.0122 0.0061 0.000267 
T55 T56 8000 Al-4/0 AWG 0.8272 0.4160 128.1760 0.0695 0.0350 0.001526 
T56 T57 1400 Al-4/0 AWG 0.1448 0.0728 22.4308 0.0122 0.0061 0.000267 
T57 T58 1400 Al-4/0 AWG 0.1448 0.0728 22.4308 0.0122 0.0061 0.000267 
T58 T59 1400 Al-4/0 AWG 0.1448 0.0728 22.4308 0.0122 0.0061 0.000267 
T59 T60 1400 Al-4/0 AWG 0.1448 0.0728 22.4308 0.0122 0.0061 0.000267 
T60 T61 1400 Al-4/0 AWG 0.1448 0.0728 22.4308 0.0122 0.0061 0.000267 
T61 T62 1400 Al-4/0 AWG 0.1448 0.0728 22.4308 0.0122 0.0061 0.000267 

          
Sub JB41 25000 

Al-1000 kcmil 
XB 0.5475 1.0675 676.1500 0.0460 0.0897 0.008048 

JB41 T63 8000 Al-4/0 AWG 0.8272 0.4160 128.1760 0.0695 0.0350 0.001526 
T63 T64 1400 Al-4/0 AWG 0.1448 0.0728 22.4308 0.0122 0.0061 0.000267 
T64 T65 1400 Al-4/0 AWG 0.1448 0.0728 22.4308 0.0122 0.0061 0.000267 
T65 T66 1400 Al-4/0 AWG 0.1448 0.0728 22.4308 0.0122 0.0061 0.000267 
T66 T67 1400 Al-4/0 AWG 0.1448 0.0728 22.4308 0.0122 0.0061 0.000267 
T67 T68 1400 Al-4/0 AWG 0.1448 0.0728 22.4308 0.0122 0.0061 0.000267 
T68 T69 1400 Al-4/0 AWG 0.1448 0.0728 22.4308 0.0122 0.0061 0.000267 
JB41 JB42 8000 Al-500 kcmil 0.3696 0.3672 172.1280 0.0311 0.0309 0.002049 
JB42 T70 100 Al-4/0 AWG 0.0103 0.0052 1.6022 0.0009 0.0004 0.000019 
T70 T71 1400 Al-4/0 AWG 0.1448 0.0728 22.4308 0.0122 0.0061 0.000267 
T71 T72 1400 Al-4/0 AWG 0.1448 0.0728 22.4308 0.0122 0.0061 0.000267 
T72 T73 1400 Al-4/0 AWG 0.1448 0.0728 22.4308 0.0122 0.0061 0.000267 
JB42 T74 10000 Al-4/0 AWG 1.0340 0.5200 160.2200 0.0869 0.0437 0.001907 
T74 T75 1400 Al-4/0 AWG 0.1448 0.0728 22.4308 0.0122 0.0061 0.000267 
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Table A1-1:  35kV cable impedances used in test system(continued). 

 

From 
Bus 
Name 

To 
Bus 
Name 

Length 
(ft) Cable Type 

R1 
(Ohms) 

X1 
(Ohms) 

B1 
(Micro 
Siemens) 

R1 
(pu) 

X1 
(pu) B1 (pu) 

T75 T76 1400 Al-4/0 AWG 0.1448 0.0728 22.4308 0.0122 0.0061 0.000267 
T76 JB43 3000 Al-4/0 AWG 0.3102 0.1560 48.0660 0.0261 0.0131 0.000572 
JB43 T77 100 Al-4/0 AWG 0.0103 0.0052 1.6022 0.0009 0.0004 0.000019 
T77 T78 1400 Al-4/0 AWG 0.1448 0.0728 22.4308 0.0122 0.0061 0.000267 
T78 T79 1400 Al-4/0 AWG 0.1448 0.0728 22.4308 0.0122 0.0061 0.000267 
JB43 T80 3000 Al-4/0 AWG 0.3102 0.1560 48.0660 0.0261 0.0131 0.000572 
T80 T81 1400 Al-4/0 AWG 0.1448 0.0728 22.4308 0.0122 0.0061 0.000267 
          

Sub JB51 10000 
Al-1000 kcmil 
XB 0.2190 0.4270 270.4600 0.0184 0.0359 0.003219 

JB51 T82 1400 Al-4/0 AWG 0.1448 0.0728 22.4308 0.0122 0.0061 0.000267 
T82 T83 1400 Al-4/0 AWG 0.1448 0.0728 22.4308 0.0122 0.0061 0.000267 
JB51 JB52 10000 Al-1000 kcmil 0.2520 0.4220 270.4600 0.0212 0.0355 0.003219 
JB52 T84 100 Al-4/0 AWG 0.0103 0.0052 1.6022 0.0009 0.0004 0.000019 
T84 T85 1400 Al-4/0 AWG 0.1448 0.0728 22.4308 0.0122 0.0061 0.000267 
T85 T86 1400 Al-4/0 AWG 0.1448 0.0728 22.4308 0.0122 0.0061 0.000267 
T86 T87 1400 Al-4/0 AWG 0.1448 0.0728 22.4308 0.0122 0.0061 0.000267 
T87 T88 1400 Al-4/0 AWG 0.1448 0.0728 22.4308 0.0122 0.0061 0.000267 
JB52 JB53 8000 Al-500 kcmil 0.3696 0.3672 172.1280 0.0311 0.0309 0.002049 
JB53 T89 1400 Al-4/0 AWG 0.1448 0.0728 22.4308 0.0122 0.0061 0.000267 
T89 T90 1400 Al-4/0 AWG 0.1448 0.0728 22.4308 0.0122 0.0061 0.000267 
T90 T91 1400 Al-4/0 AWG 0.1448 0.0728 22.4308 0.0122 0.0061 0.000267 
T91 T92 1400 Al-4/0 AWG 0.1448 0.0728 22.4308 0.0122 0.0061 0.000267 
T92 T93 1400 Al-4/0 AWG 0.1448 0.0728 22.4308 0.0122 0.0061 0.000267 
JB53 T94 100 Al-4/0 AWG 0.0103 0.0052 1.6022 0.0009 0.0004 0.000019 
T94 T95 1400 Al-4/0 AWG 0.1448 0.0728 22.4308 0.0122 0.0061 0.000267 
T95 T96 1400 Al-4/0 AWG 0.1448 0.0728 22.4308 0.0122 0.0061 0.000267 
T96 T97 1400 Al-4/0 AWG 0.1448 0.0728 22.4308 0.0122 0.0061 0.000267 
T97 T98 1400 Al-4/0 AWG 0.1448 0.0728 22.4308 0.0122 0.0061 0.000267 
T98 T99 1400 Al-4/0 AWG 0.1448 0.0728 22.4308 0.0122 0.0061 0.000267 
T99 T100 1400 Al-4/0 AWG 0.1448 0.0728 22.4308 0.0122 0.0061 0.000267 
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Appendix 2 Case Study Results for “Window” Scenario 

Table A2-1:  Case study results for “window” scenario. 

 

 POI 
Voltage 
(pu) 

Real Power 
Generation 
(MW) 

Reactive Power 
Generation (Optimal 
Method) (MVAr) 

Savings 
(kW) 

Frequency 
(hrs/year) 

Savings per 
Year (kWhr) 

Case 1 0.950 150 -4.1 11.3 50 565 
Case 2 0.975 150 -4.1 9.9 150 1486 
Case 3 1.000 150 -4.1 8.7 300 2613 
Case 4 1.025 150 -4.0 7.7 300 2312 
Case 5 1.050 150 -3.8 6.8 300 2048 
Case 6 0.950 120 -3.2 5.2 75 389 
Case 7 0.975 120 -3.2 4.6 175 796 
Case 8 1.000 120 -3.2 4.0 375 1517 
Case 9 1.025 120 -3.2 3.6 375 1353 
Case 10 1.050 120 -3.2 3.2 300 964 
Case 11 0.950 90 -2.4 2.0 100 199 
Case 12 0.975 90 -2.4 1.8 200 362 
Case 13 1.000 90 -2.4 1.7 400 666 
Case 14 1.025 90 -2.5 1.5 450 683 
Case 15 1.050 90 -2.5 1.4 250 340 
Case 16 0.950 60 -1.8 0.7 125 90 
Case 17 0.975 60 -1.8 0.7 250 166 
Case 18 1.000 60 -1.9 0.7 500 334 
Case 19 1.025 60 -1.9 0.6 525 338 
Case 20 1.050 60 -2.0 0.6 200 125 
Case 21 0.950 30 -1.4 0.4 175 67 
Case 22 0.975 30 -1.4 0.4 300 110 
Case 23 1.000 30 -1.5 0.4 625 257 
Case 24 1.025 30 -1.6 0.4 600 268 
Case 25 1.050 30 -1.6 0.4 300 131 
Case 26 0.950 0 0.0 0.1 200 22 
Case 27 0.975 0 0.0 0.1 250 20 
Case 28 1.000 0 0.0 0.1 450 40 
Case 29 1.025 0 0.0 0.1 350 34 
Case 30 1.050 0 0.0 0.1 110 11 
    Totals: 8760 18308 
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Appendix 3 Case Study Results for the “Rectangular” Scenario 

Table A3-1:  Cases study results for “Rectangular” scenario. 
 POI 

Voltage 
(pu) 

Real Power 
Generation 
(MW) 

Reactive Power 
Generation 
(MVAr) 

Savings 
(kW) 

Frequency 
(hrs/year) 

Savings per 
Year (kWhr) 

Case 1 0.950 150 47.9 0.0 20 -1 
Case 2 0.950 150 33.4 127.0 10 1270 
Case 3 0.950 150 0.0 31.9 0 0 
Case 4 0.950 150 -33.4 3.7 0 0 
Case 5 0.950 150 -48.1 9.7 0 0 
Case 6 0.975 150 48.1 21.8 40 873 
Case 7 0.975 150 33.4 121.8 20 2435 
Case 8 0.975 150 0.0 28.9 10 289 
Case 9 0.975 150 -33.4 4.5 0 0 
Case 10 0.975 150 -48.1 16.4 0 0 
Case 11 1.000 150 48.1 12.7 100 1271 
Case 12 1.000 150 33.4 116.4 75 8729 
Case 13 1.000 150 0.0 26.1 50 1304 
Case 14 1.000 150 -33.4 4.0 40 159 
Case 15 1.000 150 -48.1 18.0 10 180 
Case 16 1.025 150 36.5 -115.9 100 -11586 
Case 17 1.025 150 33.4 0.5 100 47 
Case 18 1.025 150 0.0 23.5 250 5881 
Case 19 1.025 150 -33.4 4.8 100 480 
Case 20 1.025 150 -48.1 17.6 50 880 
Case 21 1.050 150 19.3 -304.6 0 0 
Case 22 1.050 150 19.3 -304.6 0 0 
Case 23 1.050 150 0.0 21.2 25 529 
Case 24 1.050 150 -33.4 5.4 50 272 
Case 25 1.050 150 -48.1 18.9 50 944 
Case 26 0.950 120 48.1 149.5 20 2990 
Case 27 0.950 120 33.4 106.6 10 1066 
Case 28 0.950 120 0.0 16.1 0 0 
Case 29 0.950 120 -33.4 9.2 0 0 
Case 30 0.950 120 -43.0 -3.6 0 0 
Case 31 0.975 120 48.1 146.7 100 14675 
Case 32 0.975 120 33.4 102.3 30 3068 
Case 33 0.975 120 0.0 14.2 10 142 
Case 34 0.975 120 -33.4 9.2 0 0 
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Table A3-1:  Cases study results for “Rectangular” scenario (continued). 
 POI 

Voltage 
(pu) 

Real Power 
Generation 
(MW) 

Reactive Power 
Generation 
(MVAr) 

Savings 
(kW) 

Frequency 
(hrs/year) 

Savings per 
Year (kWhr) 

Case 35 0.975 120 -48.1 28.3 0 0 
Case 36 1.000 120 48.1 143.7 120 17246 
Case 37 1.000 120 33.4 97.5 80 7801 
Case 38 1.000 120 0.0 12.5 75 935 
Case 39 1.000 120 -33.4 10.1 50 506 
Case 40 1.000 120 -48.1 27.5 15 413 
Case 41 1.025 120 45.8 -10.0 120 -1204 
Case 42 1.025 120 33.4 93.4 135 12615 
Case 43 1.025 120 0.0 10.8 200 2165 
Case 44 1.025 120 -33.4 10.5 80 840 
Case 45 1.025 120 -48.1 26.2 40 1050 
Case 46 1.050 120 28.5 -205.1 0 0 
Case 47 1.050 120 28.5 -205.1 15 -3076 
Case 48 1.050 120 0.0 9.3 50 463 
Case 49 1.050 120 -33.4 10.3 100 1031 
Case 50 1.050 120 -48.1 26.2 50 1308 
Case 51 0.950 90 48.1 139.8 50 6992 
Case 52 0.950 90 33.4 88.4 15 1326 
Case 53 0.950 90 0.0 5.0 0 0 
Case 54 0.950 90 -33.4 4.8 0 0 
Case 55 0.950 90 -34.3 -1.7 0 0 
Case 56 0.975 90 48.1 136.4 110 15001 
Case 57 0.975 90 33.4 85.9 50 4293 
Case 58 0.975 90 0.0 3.8 10 38 
Case 59 0.975 90 -33.4 15.9 0 0 
Case 60 0.975 90 -48.1 30.9 0 0 
Case 61 1.000 90 48.1 132.3 120 15879 
Case 62 1.000 90 33.4 82.1 100 8205 
Case 63 1.000 90 0.0 2.7 85 231 
Case 64 1.000 90 -33.4 15.2 65 990 
Case 65 1.000 90 -48.1 36.6 30 1099 
Case 66 1.025 90 48.1 125.2 150 18776 
Case 67 1.025 90 33.4 79.1 150 11868 
Case 68 1.025 90 0.0 1.7 150 260 
Case 69 1.025 90 -33.4 15.1 75 1133 
Case 70 1.025 90 -48.1 36.2 30 1087 
Case 71 1.050 90 36.3 -203.0 20 -4059 
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Table A3-1:  Cases study results for “Rectangular” scenario (continued). 
 POI 

Voltage 
(pu) 

Real Power 
Generation 
(MW) 

Reactive Power 
Generation 
(MVAr) 

Savings 
(kW) 

Frequency 
(hrs/year) 

Savings per 
Year (kWhr) 

Case 72 1.050 90 33.4 7.0 35 244 
Case 73 1.050 90 0.0 0.7 45 33 
Case 74 1.050 90 -33.4 15.4 70 1075 
Case 75 1.050 90 -48.1 34.7 40 1388 
Case 76 0.950 60 48.1 128.7 60 7724 
Case 77 0.950 60 33.4 77.1 20 1541 
Case 78 0.950 60 0.0 0.2 0 0 
Case 79 0.950 60 -27.1 -1.8 0 0 
Case 80 0.950 60 -27.1 -1.8 0 0 
Case 81 0.975 60 48.1 125.3 120 15039 
Case 82 0.975 60 33.4 74.0 100 7396 
Case 83 0.975 60 0.0 0.1 15 2 
Case 84 0.975 60 -33.4 21.5 0 0 
Case 85 0.975 60 -44.6 -0.6 0 0 
Case 86 1.000 60 48.1 121.7 130 15827 
Case 87 1.000 60 33.4 71.9 110 7910 
Case 88 1.000 60 0.0 0.1 90 13 
Case 89 1.000 60 -33.4 21.8 75 1639 
Case 90 1.000 60 -48.1 45.2 40 1806 
Case 91 1.025 60 48.1 118.1 100 11806 
Case 92 1.025 60 33.4 69.8 200 13962 
Case 93 1.025 60 0.0 0.1 200 22 
Case 94 1.025 60 -33.4 21.0 100 2104 
Case 95 1.025 60 -48.1 43.7 40 1747 
Case 96 1.050 60 42.8 -145.4 20 -2908 
Case 97 1.050 60 33.4 67.7 30 2031 
Case 98 1.050 60 0.0 0.1 60 6 
Case 99 1.050 60 -33.4 20.4 60 1227 
Case 100 1.050 60 -48.1 42.7 30 1280 
Case 101 0.950 30 48.1 121.5 80 9719 
Case 102 0.950 30 33.4 70.4 10 704 
Case 103 0.950 30 0.0 0.1 0 0 
Case 104 0.950 30 -21.2 -0.6 0 0 
Case 105 0.950 30 -21.2 -0.6 0 0 
Case 106 0.975 30 48.1 118.5 150 17778 
Case 107 0.975 30 33.4 68.8 125 8596 
Case 108 0.975 30 0.0 0.0 45 2 
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Table A3-1:  Cases study results for “Rectangular” scenario (continued). 
Case 109 0.975 30 -33.4 26.1 0 0 
Case 110 0.975 30 -38.8 0.8 0 0 
Case 111 1.000 30 48.1 115.5 200 23108 
Case 112 1.000 30 33.4 66.2 200 13234 
Case 113 1.000 30 0.0 0.1 200 14 
Case 114 1.000 30 -33.4 26.0 75 1952 
Case 115 1.000 30 -48.1 51.6 25 1290 
Case 116 1.025 30 48.1 112.6 180 20269 
Case 117 1.025 30 33.4 64.7 200 12938 
Case 118 1.025 30 0.0 0.1 220 21 
Case 119 1.025 30 -33.4 24.5 90 2207 
Case 120 1.025 30 -48.1 49.0 30 1471 
Case 121 1.050 30 48.0 -14.2 0 0 
Case 122 1.050 30 33.4 63.2 10 632 
Case 123 1.050 30 0.0 0.1 40 3 
Case 124 1.050 30 -33.4 23.2 70 1622 
Case 125 1.050 30 -48.1 46.8 50 2339 
Case 126 0.950 0 0.0 0.1 100 7 
Case 127 0.975 0 0.0 0.1 300 24 
Case 128 1.000 0 0.0 0.1 400 36 
Case 129 1.025 0 0.0 0.1 440 43 
Case 130 1.050 0 0.0 0.1 120 12 
    Totals: 8760 372045 
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Appendix 4 Case Study Results for the “Rectangular” Scenario with 

Extended Voltage Range 

Table A4-1:  Cases study results for “Rectangular” scenario with extended voltage 
range. 

 POI 
Voltage 
(pu) 

Real 
Power 
Generation 
(MW) 

Reactive Power 
Generation 
(MVAr) 

Savings 
(kW) 

Frequency 
(hrs/year) 

Savings per 
Year (kWhr) 

Case 1 0.950 150 48.1 166.3 20 3325 
Case 2 0.950 150 33.4 197.2 10 1972 
Case 3 0.950 150 0.0 8.6 0 0 
Case 4 0.950 150 -33.4 216.8 0 0 
Case 5 0.950 150 -48.1 145.8 0 0 
Case 6 0.975 150 48.1 156.8 40 6272 
Case 7 0.975 150 33.4 187.3 20 3746 
Case 8 0.975 150 0.0 7.3 10 73 
Case 9 0.975 150 -33.4 211.2 0 0 
Case 10 0.975 150 -48.1 354.0 0 0 
Case 11 1.000 150 48.1 147.5 100 14751 
Case 12 1.000 150 33.4 178.6 75 13391 
Case 13 1.000 150 0.0 6.3 50 314 
Case 14 1.000 150 -33.4 204.1 40 8165 
Case 15 1.000 150 -48.1 347.3 10 3473 
Case 16 1.025 150 48.1 124.3 100 12427 
Case 17 1.025 150 33.4 154.3 100 15430 
Case 18 1.025 150 0.0 5.5 250 1366 
Case 19 1.025 150 -33.4 198.2 100 19820 
Case 20 1.025 150 -48.1 342.3 50 17113 
Case 21 1.050 150 48.1 -230.0 0 0 
Case 22 1.050 150 33.4 38.4 0 0 
Case 23 1.050 150 0.0 4.7 25 118 
Case 24 1.050 150 -33.4 191.9 50 9596 
Case 25 1.050 150 -48.1 335.1 50 16753 
Case 26 0.950 120 48.1 348.0 20 6960 
Case 27 0.950 120 33.4 192.6 10 1926 
Case 28 0.950 120 0.0 3.5 0 0 
Case 29 0.950 120 -33.4 216.9 0 0 
Case 30 0.950 120 -48.1 148.5 0 0 
Case 31 0.975 120 48.1 339.4 100 33936 
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Table A4-1:  Cases study results for “Rectangular” scenario with extended voltage 
range (continued). 

 POI 
Voltage 
(pu) 

Real 
Power 
Generation 
(MW) 

Reactive Power 
Generation 
(MVAr) 

Savings 
(kW) 

Frequency 
(hrs/year) 

Savings per 
Year (kWhr) 

Case 32 0.975 120 33.4 184.2 30 5527 
Case 33 0.975 120 0.0 3.0 10 30 
Case 34 0.975 120 -33.4 209.1 0 0 
Case 35 0.975 120 -48.1 359.9 0 0 
Case 36 1.000 120 48.1 328.3 120 39394 
Case 37 1.000 120 33.4 176.2 80 14096 
Case 38 1.000 120 0.0 2.6 75 191 
Case 39 1.000 120 -33.4 203.6 50 10181 
Case 40 1.000 120 -48.1 350.9 15 5264 
Case 41 1.025 120 48.1 282.2 120 33864 
Case 42 1.025 120 33.4 167.5 135 22619 
Case 43 1.025 120 0.0 2.2 200 436 
Case 44 1.025 120 -33.4 197.4 80 15792 
Case 45 1.025 120 -48.1 347.1 40 13883 
Case 46 1.050 120 48.1 91.1 0 0 
Case 47 1.050 120 33.4 132.7 15 1990 
Case 48 1.050 120 0.0 1.8 50 92 
Case 49 1.050 120 -33.4 190.5 100 19047 
Case 50 1.050 120 -48.1 338.5 50 16925 
Case 51 0.950 90 48.1 345.0 50 17249 
Case 52 0.950 90 33.4 190.2 15 2853 
Case 53 0.950 90 0.0 1.0 0 0 
Case 54 0.950 90 -33.4 73.4 0 0 
Case 55 0.950 90 -48.1 4.6 0 0 
Case 56 0.975 90 48.1 336.4 110 37008 
Case 57 0.975 90 33.4 183.0 50 9151 
Case 58 0.975 90 0.0 0.9 10 9 
Case 59 0.975 90 -33.4 210.2 0 0 
Case 60 0.975 90 -48.1 364.8 0 0 
Case 61 1.000 90 48.1 327.3 120 39271 
Case 62 1.000 90 33.4 175.3 100 17533 
Case 63 1.000 90 0.0 0.8 85 66 
Case 64 1.000 90 -33.4 203.3 65 13216 
Case 65 1.000 90 -48.1 357.5 30 10724 
Case 66 1.025 90 48.1 317.5 150 47632 
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Table A4-1:  Cases study results for “Rectangular” scenario with extended voltage 
range (continued). 

 POI 
Voltage 
(pu) 

Real 
Power 
Generation 
(MW) 

Reactive Power 
Generation 
(MVAr) 

Savings 
(kW) 

Frequency 
(hrs/year) 

Savings per 
Year (kWhr) 

Case 67 1.025 90 33.4 167.3 150 25088 
Case 68 1.025 90 0.0 0.7 150 98 
Case 69 1.025 90 -33.4 198.0 75 14852 
Case 70 1.025 90 -48.1 350.8 30 10524 
Case 71 1.050 90 48.1 120.0 20 2399 
Case 72 1.050 90 33.4 158.8 35 5559 
Case 73 1.050 90 0.0 0.5 45 23 
Case 74 1.050 90 -33.4 190.4 70 13327 
Case 75 1.050 90 -48.1 342.8 40 13711 
Case 76 0.950 60 48.1 345.3 60 20718 
Case 77 0.950 60 33.4 191.2 20 3825 
Case 78 0.950 60 0.0 0.2 0 0 
Case 79 0.950 60 -33.4 74.7 0 0 
Case 80 0.950 60 -48.1 7.5 0 0 
Case 81 0.975 60 48.1 336.7 120 40406 
Case 82 0.975 60 33.4 184.0 100 18401 
Case 83 0.975 60 0.0 0.1 15 2 
Case 84 0.975 60 -33.4 212.0 0 0 
Case 85 0.975 60 -48.1 151.9 0 0 
Case 86 1.000 60 48.1 327.8 130 42610 
Case 87 1.000 60 33.4 175.5 110 19301 
Case 88 1.000 60 0.0 0.1 90 13 
Case 89 1.000 60 -33.4 206.1 75 15458 
Case 90 1.000 60 -48.1 363.4 40 14536 
Case 91 1.025 60 48.1 318.5 100 31854 
Case 92 1.025 60 33.4 167.7 200 33548 
Case 93 1.025 60 0.0 0.1 200 22 
Case 94 1.025 60 -33.4 198.9 100 19894 
Case 95 1.025 60 -48.1 355.7 40 14229 
Case 96 1.050 60 48.1 121.3 20 2426 
Case 97 1.050 60 33.4 159.8 30 4794 
Case 98 1.050 60 0.0 0.1 60 6 
Case 99 1.050 60 -33.4 191.8 60 11510 
Case 100 1.050 60 -48.1 348.3 30 10449 
Case 101 0.950 30 48.1 346.9 80 27752 
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Table A4-1:  Cases study results for “Rectangular” scenario with extended voltage 
range (continued). 

 POI 
Voltage 
(pu) 

Real 
Power 
Generation 
(MW) 

Reactive Power 
Generation 
(MVAr) 

Savings 
(kW) 

Frequency 
(hrs/year) 

Savings per 
Year (kWhr) 

Case 102 0.950 30 33.4 192.9 10 1929 
Case 103 0.950 30 0.0 0.1 0 0 
Case 104 0.950 30 -33.4 76.0 0 0 
Case 105 0.950 30 -48.1 1.3 0 0 
Case 106 0.975 30 48.1 338.4 150 50756 
Case 107 0.975 30 33.4 185.6 125 23203 
Case 108 0.975 30 0.0 0.0 45 2 
Case 109 0.975 30 -33.4 214.7 0 0 
Case 110 0.975 30 -48.1 156.0 0 0 
Case 111 1.000 30 48.1 329.7 200 65933 
Case 112 1.000 30 33.4 177.2 200 35442 
Case 113 1.000 30 0.0 0.1 200 14 
Case 114 1.000 30 -33.4 207.0 75 15524 
Case 115 1.000 30 -48.1 369.5 25 9237 
Case 116 1.025 30 48.1 320.8 180 57747 
Case 117 1.025 30 33.4 169.7 200 33948 
Case 118 1.025 30 0.0 0.1 220 21 
Case 119 1.025 30 -33.4 200.5 90 18049 
Case 120 1.025 30 -48.1 360.7 30 10822 
Case 121 1.050 30 48.1 311.8 0 0 
Case 122 1.050 30 33.4 162.1 10 1621 
Case 123 1.050 30 0.0 0.1 40 3 
Case 124 1.050 30 -33.4 192.7 70 13490 
Case 125 1.050 30 -48.1 352.1 50 17605 
Case 126 0.950 0 0.0 0.1 100 7 
Case 127 0.975 0 0.0 0.1 300 24 
Case 128 1.000 0 0.0 0.1 400 36 
Case 129 1.025 0 0.0 0.1 440 43 
Case 130 1.050 0 0.0 0.1 120 12 
    Totals: 8760 1357770 
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Appendix 5 Case Study Results for the “Triangular” Scenario 

Table A5-1:  Case study results for “Triangular” scenario. 
 POI 

Voltage 
(pu) 

Real Power 
Generation 
(MW) 

Reactive Power 
Generation 
(MVAr) 

Savings 
(kW) 

Frequency 
(hrs/year) 

Savings per 
Year (kWhr) 

Case 1 0.950 150 47.9 0.0 20 -1 
Case 2 0.950 150 33.4 127.0 10 1270 
Case 3 0.950 150 0.0 31.9 0 0 
Case 4 0.950 150 -33.4 3.7 0 0 
Case 5 0.950 150 -48.1 10.3 0 0 
Case 6 0.975 150 48.1 21.8 40 873 
Case 7 0.975 150 33.4 121.8 20 2435 
Case 8 0.975 150 0.0 28.9 10 289 
Case 9 0.975 150 -33.4 4.5 0 0 
Case 10 0.975 150 -48.1 16.4 0 0 
Case 11 1.000 150 48.1 11.9 100 1188 
Case 12 1.000 150 33.4 116.4 75 8729 
Case 13 1.000 150 0.0 26.1 50 1304 
Case 14 1.000 150 -33.4 4.0 40 159 
Case 15 1.000 150 -48.1 18.0 10 180 
Case 16 1.025 150 36.5 -115.9 100 -11586 
Case 17 1.025 150 33.4 -5.3 100 -534 
Case 18 1.025 150 0.0 23.5 250 5881 
Case 19 1.025 150 -33.4 4.8 100 480 
Case 20 1.025 150 -48.1 17.6 50 880 
Case 21 1.050 150 19.3 -304.2 0 0 
Case 22 1.050 150 19.3 -304.2 0 0 
Case 23 1.050 150 0.0 21.2 25 529 
Case 24 1.050 150 -33.4 5.4 50 272 
Case 25 1.050 150 -48.1 18.9 50 944 
Case 26 0.950 120 38.5 123.2 25 3079 
Case 27 0.950 120 26.7 84.5 5 423 
Case 28 0.950 120 0.0 16.0 0 0 
Case 29 0.950 120 -26.7 3.9 0 0 
Case 30 0.950 120 -38.5 11.7 0 0 
Case 31 0.975 120 38.5 118.9 115 13673 
Case 32 0.975 120 26.7 89.1 15 1337 
Case 33 0.975 120 0.0 14.2 10 142 
Case 34 0.975 120 -26.7 4.3 0 0 
Case 35 0.975 120 -38.5 14.5 0 0 
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Table A5-1:  Case study results for “Triangular” scenario (continued). 
 POI 

Voltage 
(pu) 

Real Power 
Generation 
(MW) 

Reactive Power 
Generation 
(MVAr) 

Savings 
(kW) 

Frequency 
(hrs/year) 

Savings per 
Year (kWhr) 

Case 36 1.000 120 38.5 114.0 160 18241 
Case 37 1.000 120 26.7 77.1 40 3083 
Case 38 1.000 120 0.0 12.5 75 935 
Case 39 1.000 120 -26.7 4.3 30 130 
Case 40 1.000 120 -38.5 15.1 35 527 
Case 41 1.025 120 38.5 108.3 180 19500 
Case 42 1.025 120 26.7 73.4 75 5505 
Case 43 1.025 120 0.0 10.8 200 2165 
Case 44 1.025 120 -26.7 5.0 80 399 
Case 45 1.025 120 -38.5 15.0 40 602 
Case 46 1.050 120 28.5 -255.4 0 0 
Case 47 1.050 120 26.7 -84.2 15 -1263 
Case 48 1.050 120 0.0 9.3 50 463 
Case 49 1.050 120 -26.7 5.2 100 517 
Case 50 1.050 120 -38.5 14.5 50 723 
Case 51 0.950 90 28.9 28.8 50 1438 
Case 52 0.950 90 20.0 16.4 15 246 
Case 53 0.950 90 0.0 1.0 0 0 
Case 54 0.950 90 -20.0 4.4 0 0 
Case 55 0.950 90 -28.9 10.3 0 0 
Case 56 0.975 90 28.9 26.4 110 2902 
Case 57 0.975 90 20.0 15.3 50 763 
Case 58 0.975 90 0.0 0.9 10 9 
Case 59 0.975 90 -20.0 4.3 0 0 
Case 60 0.975 90 -28.9 11.2 0 0 
Case 61 1.000 90 28.9 24.7 120 2970 
Case 62 1.000 90 20.0 14.0 100 1405 
Case 63 1.000 90 0.0 0.8 85 66 
Case 64 1.000 90 -20.0 4.5 35 157 
Case 65 1.000 90 -28.9 11.0 60 658 
Case 66 1.025 90 28.9 23.8 150 3570 
Case 67 1.025 90 20.0 12.7 150 1912 
Case 68 1.025 90 0.0 0.7 150 98 
Case 69 1.025 90 -20.0 4.2 50 208 
Case 70 1.025 90 -28.9 11.1 55 613 
Case 71 1.050 90 28.9 7.4 20 149 
Case 72 1.050 90 20.0 12.0 35 418 



www.manaraa.com

  82 

Table A5-1:  Case study results for “Triangular” scenario (continued). 
 POI 

Voltage 
(pu) 

Real Power 
Generation 
(MW) 

Reactive Power 
Generation 
(MVAr) 

Savings 
(kW) 

Frequency 
(hrs/year) 

Savings per 
Year (kWhr) 

Case 73 1.050 90 0.0 0.6 45 25 
Case 74 1.050 90 -20.0 4.1 35 143 
Case 75 1.050 90 -28.9 10.6 75 792 
Case 76 0.950 60 19.2 36.7 80 2936 
Case 77 0.950 60 13.4 23.0 10 230 
Case 78 0.950 60 0.0 0.2 0 0 
Case 79 0.950 60 -13.4 3.0 0 0 
Case 80 0.950 60 -19.2 6.7 0 0 
Case 81 0.975 60 19.2 35.2 170 5981 
Case 82 0.975 60 13.4 21.7 50 1086 
Case 83 0.975 60 0.0 0.1 15 2 
Case 84 0.975 60 -13.4 2.5 0 0 
Case 85 0.975 60 -19.2 6.7 0 0 
Case 86 1.000 60 19.2 33.7 190 6397 
Case 87 1.000 60 13.4 20.5 50 1025 
Case 88 1.000 60 0.0 0.1 90 13 
Case 89 1.000 60 -13.4 2.8 40 111 
Case 90 1.000 60 -19.2 6.0 75 453 
Case 91 1.025 60 19.2 32.7 200 6546 
Case 92 1.025 60 13.4 19.7 100 1967 
Case 93 1.025 60 0.0 0.1 200 22 
Case 94 1.025 60 -13.4 2.5 40 101 
Case 95 1.025 60 -19.2 6.2 90 560 
Case 96 1.050 60 19.2 31.2 35 1093 
Case 97 1.050 60 13.4 18.8 15 282 
Case 98 1.050 60 0.0 0.1 60 6 
Case 99 1.050 60 -13.4 2.3 30 70 
Case 100 1.050 60 -19.2 5.8 60 346 
Case 101 0.950 30 9.6 9.8 80 784 
Case 102 0.950 30 6.7 4.5 10 45 
Case 103 0.950 30 0.0 0.1 0 0 
Case 104 0.950 30 -6.7 1.1 0 0 
Case 105 0.950 30 -9.6 2.4 0 0 
Case 106 0.975 30 9.6 9.0 225 2033 
Case 107 0.975 30 6.7 3.8 50 190 
Case 108 0.975 30 0.0 0.0 45 2 
Case 109 0.975 30 -6.7 1.3 0 0 
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Table A5-1:  Case study results for “Triangular” scenario (continued). 
 POI 

Voltage 
(pu) 

Real Power 
Generation 
(MW) 

Reactive Power 
Generation 
(MVAr) 

Savings 
(kW) 

Frequency 
(hrs/year) 

Savings per 
Year (kWhr) 

Case 110 0.975 30 -9.6 2.1 0 0 
Case 111 1.000 30 9.6 8.6 300 2576 
Case 112 1.000 30 6.7 3.3 100 334 
Case 113 1.000 30 0.0 0.1 200 14 
Case 114 1.000 30 -6.7 1.1 35 38 
Case 115 1.000 30 -9.6 2.2 65 142 
Case 116 1.025 30 9.6 7.9 280 2201 
Case 117 1.025 30 6.7 2.7 100 271 
Case 118 1.025 30 0.0 0.0 220 11 
Case 119 1.025 30 -6.7 1.2 45 53 
Case 120 1.025 30 -9.6 2.3 75 171 
Case 121 1.050 30 9.6 7.2 5 36 
Case 122 1.050 30 6.7 2.1 5 10 
Case 123 1.050 30 0.0 0.1 40 3 
Case 124 1.050 30 -6.7 1.0 35 34 
Case 125 1.050 30 -9.6 2.0 85 169 
Case 126 0.950 0 0.0 0.1 100 7 
Case 127 0.975 0 0.0 0.1 300 24 
Case 128 1.000 0 0.0 0.1 400 36 
Case 129 1.025 0 0.0 0.1 440 43 
Case 130 1.050 0 0.0 0.1 120 12 
    Totals: 8760 140474 
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Appendix 6 Case Study Results for the “Triangular” Scenario with 

Extended Voltage Range 

Table A6-1:  Case study results for “Triangular” scenario with extended voltage 
range 

 POI 
Voltage 
(pu) 

Real Power 
Generation 
(MW) 

Reactive Power 
Generation 
(MVAr) 

Savings 
(kW) 

Frequency 
(hrs/year) 

Savings per 
Year (kWhr) 

Case 1 0.950 150 48.1 166.3 20 3325 
Case 2 0.950 150 33.4 197.2 10 1972 
Case 3 0.950 150 0.0 8.5 0 0 
Case 4 0.950 150 -33.4 3.7 0 0 
Case 5 0.950 150 -48.1 10.9 0 0 
Case 6 0.975 150 48.1 156.8 40 6272 
Case 7 0.975 150 33.4 187.3 20 3746 
Case 8 0.975 150 0.0 7.3 10 73 
Case 9 0.975 150 -33.4 4.5 0 0 
Case 10 0.975 150 -48.1 16.4 0 0 
Case 11 1.000 150 48.1 147.5 100 14752 
Case 12 1.000 150 33.4 177.6 75 13317 
Case 13 1.000 150 0.0 6.3 50 314 
Case 14 1.000 150 -33.4 4.0 40 159 
Case 15 1.000 150 -48.1 18.0 10 180 
Case 16 1.025 150 48.1 123.9 100 12388 
Case 17 1.025 150 33.4 154.3 100 15430 
Case 18 1.025 150 0.0 5.4 250 1352 
Case 19 1.025 150 -33.4 4.8 100 480 
Case 20 1.025 150 -48.1 17.6 50 880 
Case 21 1.050 150 48.1 -230.3 0 0 
Case 22 1.050 150 33.4 38.2 0 0 
Case 23 1.050 150 0.0 4.7 25 116 
Case 24 1.050 150 -33.4 5.4 50 272 
Case 25 1.050 150 -48.1 18.9 50 944 
Case 26 0.950 120 38.5 246.2 25 6156 
Case 27 0.950 120 26.7 124.4 5 622 
Case 28 0.950 120 0.0 3.5 0 0 
Case 29 0.950 120 -26.7 5.0 0 0 
Case 30 0.950 120 -38.5 11.7 0 0 
Case 31 0.975 120 38.5 236.4 115 27190 
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Table A6-1:  Case study results for “Triangular” scenario with extended voltage 
range (continued). 

 POI 
Voltage 
(pu) 

Real Power 
Generation 
(MW) 

Reactive Power 
Generation 
(MVAr) 

Savings 
(kW) 

Frequency 
(hrs/year) 

Savings per 
Year (kWhr) 

Case 32 0.975 120 26.7 116.3 15 1745 
Case 33 0.975 120 0.0 3.0 10 30 
Case 34 0.975 120 -26.7 4.3 0 0 
Case 35 0.975 120 -38.5 14.5 0 0 
Case 36 1.000 120 38.5 227.1 160 36342 
Case 37 1.000 120 26.7 108.5 40 4342 
Case 38 1.000 120 0.0 2.6 75 191 
Case 39 1.000 120 -26.7 4.3 30 130 
Case 40 1.000 120 -38.5 15.1 35 527 
Case 41 1.025 120 38.5 218.3 180 39297 
Case 42 1.025 120 26.7 100.3 75 7522 
Case 43 1.025 120 0.0 2.2 200 436 
Case 44 1.025 120 -26.7 5.0 80 399 
Case 45 1.025 120 -38.5 15.0 40 602 
Case 46 1.050 120 38.5 70.2 0 0 
Case 47 1.050 120 26.7 84.2 15 1263 
Case 48 1.050 120 0.0 1.9 50 94 
Case 49 1.050 120 -26.7 5.2 100 517 
Case 50 1.050 120 -38.5 15.9 50 793 
Case 51 0.950 90 28.9 145.3 50 7265 
Case 52 0.950 90 20.0 63.8 15 957 
Case 53 0.950 90 0.0 1.0 0 0 
Case 54 0.950 90 -20.0 4.4 0 0 
Case 55 0.950 90 -28.9 10.3 0 0 
Case 56 0.975 90 28.9 138.2 110 15200 
Case 57 0.975 90 20.0 61.3 50 3063 
Case 58 0.975 90 0.0 0.9 10 9 
Case 59 0.975 90 -20.0 4.3 0 0 
Case 60 0.975 90 -28.9 11.2 0 0 
Case 61 1.000 90 28.9 130.6 120 15675 
Case 62 1.000 90 20.0 58.5 100 5854 
Case 63 1.000 90 0.0 0.8 85 66 
Case 64 1.000 90 -20.0 4.5 35 157 
Case 65 1.000 90 -28.9 11.0 60 658 
Case 66 1.025 90 28.9 122.7 150 18408 
Case 67 1.025 90 20.0 55.7 150 8354 
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Table A6-1:  Case study results for “Triangular” scenario with extended voltage 
range (continued). 

 POI 
Voltage 
(pu) 

Real Power 
Generation 
(MW) 

Reactive Power 
Generation 
(MVAr) 

Savings 
(kW) 

Frequency 
(hrs/year) 

Savings per 
Year (kWhr) 

Case 68 1.025 90 0.0 0.7 150 98 
Case 69 1.025 90 -20.0 4.2 50 208 
Case 70 1.025 90 -28.9 11.1 55 613 
Case 71 1.050 90 28.9 114.5 20 2290 
Case 72 1.050 90 20.0 53.3 35 1865 
Case 73 1.050 90 0.0 0.6 45 25 
Case 74 1.050 90 -20.0 4.1 35 143 
Case 75 1.050 90 -28.9 10.6 75 792 
Case 76 0.950 60 19.2 58.4 80 4669 
Case 77 0.950 60 13.4 28.6 10 286 
Case 78 0.950 60 0.0 0.2 0 0 
Case 79 0.950 60 -13.4 3.0 0 0 
Case 80 0.950 60 -13.4 41.9 0 0 
Case 81 0.975 60 19.2 56.0 170 9514 
Case 82 0.975 60 13.4 26.4 50 1322 
Case 83 0.975 60 0.0 0.1 15 2 
Case 84 0.975 60 -13.4 3.1 0 0 
Case 85 0.975 60 -13.4 40.2 0 0 
Case 86 1.000 60 19.2 53.5 190 10166 
Case 87 1.000 60 13.4 24.2 50 1212 
Case 88 1.000 60 0.0 0.1 90 13 
Case 89 1.000 60 -13.4 2.8 40 111 
Case 90 1.000 60 -13.4 38.0 75 2847 
Case 91 1.025 60 19.2 51.0 200 10198 
Case 92 1.025 60 13.4 22.4 100 2237 
Case 93 1.025 60 0.0 0.1 200 22 
Case 94 1.025 60 -13.4 2.5 40 101 
Case 95 1.025 60 -13.4 36.7 90 3304 
Case 96 1.050 60 19.2 49.0 35 1714 
Case 97 1.050 60 13.4 20.4 15 307 
Case 98 1.050 60 0.0 0.1 60 6 
Case 99 1.050 60 -13.4 2.8 30 85 
Case 100 1.050 60 -13.4 34.9 60 2095 
Case 101 0.950 30 9.6 2.3 80 185 
Case 102 0.950 30 6.7 1.2 10 12 
Case 103 0.950 30 0.0 0.1 0 0 
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Table A6-1:  Case study results for “Triangular” scenario with extended voltage 
range (continued). 

 POI 
Voltage 
(pu) 

Real Power 
Generation 
(MW) 

Reactive Power 
Generation 
(MVAr) 

Savings 
(kW) 

Frequency 
(hrs/year) 

Savings per 
Year (kWhr) 

Case 104 0.950 30 -6.7 1.1 0 0 
Case 105 0.950 30 -9.6 2.4 0 0 
Case 106 0.975 30 9.6 2.1 225 461 
Case 107 0.975 30 6.7 1.0 50 52 
Case 108 0.975 30 0.0 0.1 45 4 
Case 109 0.975 30 -6.7 1.0 0 0 
Case 110 0.975 30 -9.6 2.1 0 0 
Case 111 1.000 30 9.6 2.1 300 628 
Case 112 1.000 30 6.7 0.9 100 90 
Case 113 1.000 30 0.0 0.1 200 14 
Case 114 1.000 30 -6.7 1.1 35 38 
Case 115 1.000 30 -9.6 2.2 65 142 
Case 116 1.025 30 9.6 1.9 280 522 
Case 117 1.025 30 6.7 0.9 100 94 
Case 118 1.025 30 0.0 0.0 220 11 
Case 119 1.025 30 -6.7 1.2 45 53 
Case 120 1.025 30 -9.6 2.3 75 171 
Case 121 1.050 30 9.6 1.7 5 8 
Case 122 1.050 30 6.7 0.8 5 4 
Case 123 1.050 30 0.0 0.1 40 3 
Case 124 1.050 30 -6.7 1.0 35 34 
Case 125 1.050 30 -9.6 2.0 85 169 
Case 126 0.950 0 0.0 0.1 100 11 
Case 127 0.975 0 0.0 0.1 300 24 
Case 128 1.000 0 0.0 0.1 400 36 
Case 129 1.025 0 0.0 0.1 440 43 
Case 130 1.050 0 0.0 0.1 120 12 
    Totals: 8760 338897 
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